Skip to main content
Log in

Drift velocity of electrons in quantum wells of selectively doped In0.5Ga0.5As/Al x In1 − x As and In0.2Ga0.8As/Al x Ga1 − x As heterostructures in high electric fields

  • Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The field dependence of drift velocity of electrons in quantum wells of selectively doped In0.5Ga0.5As/Al x In1 − x As and In0.2Ga0.8As/Al x Ga1 − x As heterostructures is calculated by the Monte Carlo method. The influence of varying the molar fraction of Al in the composition of the Al x Ga1 − x As and Al x In1 − x As barriers of the quantum well on the mobility and drift velocity of electrons in high electric fields is studied. It is shown that the electron mobility rises as the fraction x of Al in the barrier composition is decreased. The maximum mobility in the In0.5Ga0.5As/In0.8Al0.2As quantum wells exceeds the mobility in a bulk material by a factor of 3. An increase in fraction x of Al in the barrier leads to an increase in the threshold field E th of intervalley transfer (the Gunn effect). The threshold field is E th = 16 kV/cm in the In0.5Ga0.5As/Al0.5In0.5As heterostructures and E th = 10 kV/cm in the In0.2Ga0.8As/Al0.3Ga0.7As heterostructures. In the heterostructures with the lowest electron mobility, E th = 2–3 kV/cm, which is lower than E th = 4 kV/cm in bulk InGaAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Zhao, Y.-T. Chen, J. H. Yum, Y. Wang, F. Zhou, F. Xue, and J. C. Lee, Appl. Phys. Lett. 96, 102101 (2010).

    Article  ADS  Google Scholar 

  2. N. Dyakonova, A. El Fatimy, J. Lusakowski, and W. Knap, Appl. Phys. Lett. 88, 141906 (2006).

    Article  ADS  Google Scholar 

  3. N. Dyakonova, F. Teppe, J. Lusakovski, W. Knap, M. Levinshtein, A. P. Dmitriev, M. Shur, S. Bollacrt, and A. Cappy, J. Appl. Phys. 97, 114313 (2005).

    Article  ADS  Google Scholar 

  4. W. J. Stillman and M. S. Shur, J. Nanoelectron. Optoelectron. 2, 209 (2007).

    Article  Google Scholar 

  5. J. Požela, A. Namajūnas, K. Požela, and V. Jucienė, J. Appl. Phys. 81, 1775 (1997).

    Article  ADS  Google Scholar 

  6. Yu. Požela, K. Požela, and V. Jucienė, Fiz. Tekh. Poluprovodn. 41, 1093 (2007) [Semiconductors 41, 1074 (2007)].

    Google Scholar 

  7. V. G. Mokerov, I. S. Vasil’evskii, G. B. Galiev, Yu. Požela, K. Požela, A. Suzhedelis, V. Yutsene, and Ch. Pashkevich, Fiz. Tekh. Poluprovodn. 43, 478 (2009) [Semiconductors 43, 458 (2009)].

    Google Scholar 

  8. J. Požela, K. Požela, A. Shkolnik, A. Sužiedėlis, V. Jucienė, S. Mikhrin, and V. Mikhrin, Phys. Status Solidi C 6, 2713 (2009).

    Article  ADS  Google Scholar 

  9. I. Lee, S. M. Goodnick, M. Gulia, E. Molinari, and P. Lugli, Phys. Rev. B 51, 7046 (1995).

    Article  ADS  Google Scholar 

  10. N. Mori and T. Ando, Phys. Rev. B 40, 6175 (1989).

    Article  ADS  Google Scholar 

  11. Yu. Požela, K. Požela, V. Yutsene, A. Suzhedelis, A. S. Shkol’nik, S. S. Mikhrin, and V. S. Mikhrin, Fiz. Tekh. Poluprovodn. 43, 1634 (2009) [Semiconductors 43, 1590 (2009)].

    Google Scholar 

  12. T. P. Pearsall, R. Carles, and J. S. Portal, Appl. Phys. Lett. 42, 436 (1983).

    Article  ADS  Google Scholar 

  13. I. S. Vasil’evskii, G. B. Galiev, Yu. A. Matveev, E. A. Klimov, Yu. Požela, K. Požela, A. Suzhedelis, Ch. Pashkevich, and V. Yutsene, Fiz. Tekh. Poluprovodn. 44, 928 (2010) [Semiconductors 44, 898 (2010)].

    Google Scholar 

  14. X. Wallart, B. Pinsard, and F. Mollot, J. Appl. Phys. 97, 053706 (2005).

    Article  ADS  Google Scholar 

  15. V. Drouot, M. Gendry, C. Santinelli, P. Victorovicth, and G. Hollinger, J. Appl. Phys. 77, 1810 (1995).

    Article  ADS  Google Scholar 

  16. J. Požela, K. Požela, V. Jucienė, and A. Shkolnik, Semicond. Sci. Technol. 26, 014025 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Požela.

Additional information

Original Russian Text © J. Po ela, K. Požela, R. Raguotis, V. Jucienė, 2011, published in Fizika i Tekhnika Poluprovodnikov, 2011, Vol. 45, No. 6, pp. 778–782.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Požela, J., Požela, K., Raguotis, R. et al. Drift velocity of electrons in quantum wells of selectively doped In0.5Ga0.5As/Al x In1 − x As and In0.2Ga0.8As/Al x Ga1 − x As heterostructures in high electric fields. Semiconductors 45, 761–765 (2011). https://doi.org/10.1134/S1063782611060212

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782611060212

Keywords

Navigation