Skip to main content
Log in

Features of obtaining diluted magnetic semiconductors in the system of narrow-gap GaInAsSb alloys

  • Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Nanotechnology of obtainment of diluted magnetic semiconductors based on the GaInAsSb compounds is developed using the laser deposition of Mn atoms on the surface of the epitaxial layer of a quaternary alloy obtained by liquid-phase epitaxy. Fabricated heterostructures were studied using high-resolution X-ray diffraction for the Bragg and grazing diffraction geometries, and the layer-by-layer analysis is performed by secondary-ion mass spectrometry. It is established that the near-boundary region of the Ga0.96In0.04As0.11Sb0.89 layer near the deposition surface of atomic Mn exhibits the presence of a quinary compound with Mn atoms in the lattice and Mn3As2-type binary inclusions. Saturation of the GaIn(Mn)AsSb multicomponent diluted semiconductor with the Mn compounds makes it possible to specify the concentration of the magnetic impurity in the crystal and control the magnetic properties of the heterostructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. W. Edmonds, P. Boguslavski, K. Y. Wang, R. P. Campion, S. N. Novikov, N. R. S. Farley, B. L. Gallagher, C. T. Foxon, M. Sawicki, T. Dietl, M. Buongiorno Nardelli, and J. Bernholc, Phys. Rev. Lett. 92, 037201 (2004).

    Article  ADS  Google Scholar 

  2. T. Schallenberg and H. Munekata, Appl. Phys. Lett. 89, 042507 (2006).

    Article  ADS  Google Scholar 

  3. H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, and K. Ohtani, Nature (London) 408, 944 (2000).

    Article  ADS  Google Scholar 

  4. S. Koshihara, A. Oiwa, M. Hirasawa, S. Katsumoto, Y. Iye, C. Urano, H. Takagi, and H. Munekata, Phys. Rev. Lett. 78, 4617 (1997).

    Article  ADS  Google Scholar 

  5. H. Ohno, J. Magn. Magn. Mater. 200, 110 (1999).

    Article  ADS  Google Scholar 

  6. T. S. Lagunova, T. I. Voronina, M. P. Mikhailova, K. D. Moiseev, E. Samokhin, and Yu. P. Yakovlev, Fiz. Tekh. Poluprovodn. 37, 905 (2003) [Semiconductors 37, 876 (2003)].

    Google Scholar 

  7. T. Slupinski, H. Munekata, and A. Oiwa, Appl. Phys. Lett. 80, 1592 (2002).

    Article  ADS  Google Scholar 

  8. A. M. Nazmul, T. Amemiya, Y. Shuto, S. Sugahara, and M. Tanaka, Phys. Rev. Lett. 95, 017201 (2005).

    Article  ADS  Google Scholar 

  9. M. P. Mikhailova, K. D. Moiseev, and Yu. P. Yakovlev, Semicond. Sci. Technol. 19, R109 (2004).

    Article  ADS  Google Scholar 

  10. V. A. Berezovets, K. D. Moiseev, M. P. Mikhailova, R. V. Parfeniev, Yu. P. Yakovlev, and V. I. Nizhankovskii, Fiz. Nizk. Temp. 33, 194 (2001) [J. Low Temp. Phys. 33, 137 (2001)].

    Google Scholar 

  11. R. V. Parfeniev, K. D. Moiseev, V. A. Berezovets, N. S. Averkiev, M. P. Mikhailova, V. Nizhankovskii, and D. Kaczorowski, J. Magn. Magn. Mater. 321, 712 (2009).

    Article  ADS  Google Scholar 

  12. Yu. A. Danilov, E. S. Demidov, Yu. N. Drozdov, V. P. Lesnikov, and V. V. Podol’skii, Fiz. Tekh. Poluprovodn. 39, 8 (2005) [Semiconductors 39, 4 (2005)].

    Google Scholar 

  13. E. S. Demidov, V. V. Podol’skii, V. P. Lesnikov, M. V. Sapozhnikov, D. V. Druzhnov, S. N. Gusev, B. A. Gribkov, D. O. Filatov, Yu. S. Stepanova, and S. A. Levchuk, Zh. Eksp. Teor. Fiz. 133, 1 (2008) [JETP 106, 110 (2008)].

    Google Scholar 

  14. Y. Gao, J. Appl. Phys. 64, 3760 (1988).

    Article  ADS  Google Scholar 

  15. J. M. Schroer, H. Gnaser, and H. Oechsner, in Proceedings of the 9th Intern. Conference on Second. Ion Mass Spectrometry, Yokohama, Japan, 7–12 Nov. 1993, p. 386.

  16. K. D. Moiseev, A. A. Sitnikova, N. N. Faleev, and Yu. P. Yakovlev, Fiz. Tekh. Poluprovodn. 34, 1438 (2000) [Semiconductors 34, 1376 (2000)].

    Google Scholar 

  17. National Bur. Stand. (U.S.). Circ. 539(9), 30 (1956).

  18. National Bur. Stand (U.S.). Monogr. 25(3), 35 (1964).

  19. A. N. Baranov, A. M. Litvak, K. D. Moiseev, V. V. Sherstnev, and Yu. P. Yakovlev, Zh. Prikl. Khim. 67, 1951 (1994).

    Google Scholar 

  20. L. Dietrich, W. Jeitschko, and M. Moller, Z. Kristallogr. 190, 259 (1990).

    Article  Google Scholar 

  21. K. D. Moiseev, A. Krier, and Yu. P. Yakovlev, J. Appl. Phys. 90, 3988 (2001).

    Article  ADS  Google Scholar 

  22. T. I. Voronina, T. S. Lagunova, M. P. Mikhailova, K. D. Moiseev, A. F. Lipaev, and Yu. P. Yakovlev, Fiz. Tekh. Poluprovodn. 40, 519 (2006) [Semiconductors 40, 503 (2006)].

    Google Scholar 

  23. T. Jungwirth, J. Sinova, J. Mašek, J. Kučera, and A. H. Macdonald, Rev. Mod. Phys. 78, 809 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. D. Moiseev.

Additional information

Original Russian Text © K.D. Moiseev, V.P. Lesnikov, V.V. Podolski, Yu. Kudriavtsev, O. Kudriavtseva, A. Escobosa, V. Sanchez-Resendiz, 2011, published in Fizika i Tekhnika Poluprovodnikov, 2011, Vol. 45, No. 6, pp. 788–793.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moiseev, K.D., Lesnikov, V.P., Podolski, V.V. et al. Features of obtaining diluted magnetic semiconductors in the system of narrow-gap GaInAsSb alloys. Semiconductors 45, 771–775 (2011). https://doi.org/10.1134/S1063782611060145

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782611060145

Keywords

Navigation