Skip to main content
Log in

Carrier transport in layered semiconductor (p-GaSe)-ferroelectric (KNO3) composite nanostructures

  • Microcrystalline, Nanocrystalline, Porous, and Composite Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The current-voltage characteristics and frequency dependences of the impedance of composite nanostructures fabricated on the basis of layered anisotropic semiconductor p-GaSe and ferroelectric KNO3 are studied. Multilayer nanostructures were obtained by introducing nanoscale pyramidal ferroelectric inclusions into a layered GaSe matrix. Hysteresis phenomena in current-voltage characteristics and abrupt changes in the conductance and capacitance in frequency dependences of the impedance are detected. These phenomena are associated with the collective effect of electric polarization switching in nanoscale 3D ferroelectric inclusions in the layered matrix, features of its local deformation, and polytype phase transitions in this matrix. X-ray, atomic-force microscopy, and impedance studies in a low (B < 400 mT) magnetic field show that the electrical characteristics of nanostructures are associated with the Maxwell-Wagner effect in nanostructures, the formation of quantum wells in GaSe during deformation of crystals in the region of nanoscale inclusion localization, and carrier tunneling in the structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Fridkin, R. V. Gainutdinov, and S. Dyusharm, Usp. Fiz. Nauk 180, 209 (2010) [Phys. Usp. 53, 199 (2010)].

    Article  Google Scholar 

  2. S. V. Kalinin, A. N. Morozovska, L. Q. Chen, and B. J. Rodriguez, Rep. Progr. Phys. 73, 056502 (2010).

    Article  ADS  Google Scholar 

  3. B. J. Rodriguez, S. Jesse, M. Alexe, and S. V. Kalinin, Adv. Matter. 20, 109 (2008).

    Article  Google Scholar 

  4. M. D. Glinchuk, E. A. Eliseev, and A. N. Morozovska, Ukr. J. Phys. Rev. 5, 34 (2009).

    Google Scholar 

  5. F. Batallan, I. Rosenman, Ch. Simon, and G. Furdin, Mater. Rec. Soc. Symp. Proc. 20, 129 (1983).

    Article  Google Scholar 

  6. A. P. Bakhtinov, V. N. Vodop’yanov, E. I. Slyn’ko, Z. D. Kovalyuk, and O. S. Litvin, Pis’ma Zh. Tekh. Fiz. 33(2), 80 (2007) [Tech. Phys. Lett. 33, 86 (2007)].

    Google Scholar 

  7. S. I. Drapak, A. P. Bakhtinov, S. V. Gavrylyuk, Z. D. Kovalyuk, and O. S. Lytvyn, Superlat. Microstruct. 44, 563 (2008).

    Article  ADS  Google Scholar 

  8. S. I. Drapak, S. V. Gavrilyuk, V. M. Kaminskii, and Z. D. Kovalyuk, Zh. Tekh. Fiz. 78, 112 (2008) [Tech. Phys. 53, 1215 (2008)].

    Google Scholar 

  9. A. I. Dmitriev, Z. D. Kovalyuk, G. V. Lashkarev, V. I. Lazorenko, M. Yu. Gusev, A. N. Zyuganov, and P. S. Smertenko, Solid State Commun. 75, 465 (1990).

    Article  ADS  Google Scholar 

  10. S. V. Baryshnikov, E. V. Stukova, E. V. Charnaya, Cheng Tien, M. K. Lee, W. Bohlmann, and D. Michel, Fiz. Tverd. Tela 48, 551 (2006) [Phys. Solid State 48, 593 (2006)].

    Google Scholar 

  11. S. V. Baryshnikov, E. V. Charnaya, A. Yu. Milinskii, E. V. Stukova, Cheng Tien, W. Bohlmann, and D. Michel, Fiz. Tverd. Tela 51, 1172 (2009) [Phys. Solid State 51, 1243 (2009)].

    Google Scholar 

  12. S. V. Baryshnikov, E. V. Charnaya, Cheng Tien, M. K. Lee, D. Michel, N. P. Andriyanova, and E. V. Stukova, Fiz. Tverd. Tela 49, 751 (2007) [Phys. Solid State 49, 791 (2007)].

    Google Scholar 

  13. V. V. Netyaga, I. I. Grigorchak, and Z. D. Kovalyuk, Fiz. Tverd. Tela 34, 3608 (1992) [Sov. Phys. Solid State 34, 1933 (1992)].

    Google Scholar 

  14. V. V. Netyaga, I. I. Grigorchak, and Z. D. Kovalyuk, Fiz. Tekh. Poluprovodn. 27, 1220 (1993) [Semiconductors 27, 673 (1993)].

    Google Scholar 

  15. I. I. Grigorchak, V. V. Netyaga, and Z. D. Kovalyuk, J. Phys.: Condens. Matter 9, L191 (1997).

    Article  ADS  Google Scholar 

  16. B. I. Smirnov, N. N. Peschanskaya, and V. I. Nikolaev, Fiz. Tverd. Tela 43, 2154 (2001) [Phys. Solid State 43, 2250 (2001)].

    Google Scholar 

  17. R. Ahluwalia, Nathaniel Ng, and D. J. Srolovitz, Nanotechnolohy 20, 445709 (2009).

    Article  ADS  Google Scholar 

  18. G. L. Belen’kii, V. A. Goncharov, V. D. Negrii, Yu. A. Osip’yan, and R. A. Suleimanov, Fiz. Tverd. Tela 26, 3144 (1984) [Sov. Phys. Solid State 26, 1893 (1984)].

    Google Scholar 

  19. G. V. Lashkarev, A. I. Dmitriev, A. A. Baida, Z. D. Kovalyuk, M. V. Kondrin, and A. A. Pronin, Fiz. Tekh. Poluprovodn. 37, 145 (2003) [Semiconductors 37, 134 (2003)].

    Google Scholar 

  20. I. I. Grigorchak, V. V. Netyaga, I. D. Koz’mik, K. D. Tovstyuk, Z. D. Kovalyuk, B. P. Bakhmatyuk, and S. Ya. Golub’, Pis’ma Zh. Tekh. Fiz. 15(4), 87 (1989) [Tech. Phys. Lett. 89, 158 (2009)].

    Google Scholar 

  21. D. Kaluarachchi and R. F. Frindt, Phys. Rev. B 28, 3663 (1983).

    Article  ADS  Google Scholar 

  22. G. L. Belen’kii E. Yu. Salaev, and R. A. Suleimanov, Usp. Fiz. Nauk 155, 89 (1988) [Sov. Phys. Usp. 31, 434 (1988)].

    Article  Google Scholar 

  23. D. H. Mosca, N. Mattoso, C. M. Lepienski, W. Veiga, I. Mazzaro, V. H. Etgens, and M. Eddrief, J. Appl. Phys. 91, 140 (2002).

    Article  ADS  Google Scholar 

  24. A. P. Bakhtinov, V. N. Vodop’yanov, Z. D. Kovalyuk, V. V. Netyaga, and O. S. Litvin, Fiz. Tekh. Poluprovodn. 44, 180 (2010) [Semiconductors 44, 171 (2010)].

    Google Scholar 

  25. Z. D. Kovalyuk, A. P. Bakhtinov, V. N. Vodop’yanov, A. V. Zaslonkin, and V. V. Netyaga, in Carbon Nanomaterials in Clean Energy Hydrogen Systems, Ed. by B. Baranowski, S. Yu. Zaginaichenko, D. V. Schur, V. V. Skorokhod, and A. Veziroglu (Springer, Netherlands, 2009).

    Google Scholar 

  26. P. w. M. Blom, R. M. Wolf, J. F. M. Cillessen, and M. P. C. Krijn, Phys. Rev. Lett. 73, 2107 (1994).

    Article  ADS  Google Scholar 

  27. A. S Bogatin, I. V. Lisitsa, and S. A. Bogatina, Pis’ma Zh. Tekh. Fiz. 28(18), 61 (2002) [Tech. Phys. Lett. 28, 779 (2002)].

    Google Scholar 

  28. Y. Y. Proskuryakov, K. Durose, B. M. Taele, and S. Oelting, J. Appl. Phys. 102, 024504 (2007).

    Article  ADS  Google Scholar 

  29. B. Erdinc and H. Akkus, Phys. Scripta 79, 025601 (2009).

    Article  ADS  Google Scholar 

  30. V. R. Aravind, A. N. Morozovska, I. Grinberg, S. Bhattacharyya, Y. Li, S. Jesse, S. Choudhury, P. Wu, K. Seal, E. A. Eliseev, S. V. Svechnikov, D. Lee, S. R. Phillpot, L. Q. Chen, A. M. Rappe, V. Gopalan, and S. V. Kalinin, arXiv:1004, 0797.

  31. A. V. Turik, G. S. Radchenko, A. I. Chernobabov, S. A. Turik, and V. V. Suprunov, Fiz. Tverd. Tela 48, 1088 (2006) [Phys. Solid State 48, 1157 (2006)].

    Google Scholar 

  32. G. Z. Liu, C. Wang, C.-C. Wang, J. Qiu, M. He, J. Xing, K.- Jin, H.-B. Lu, and G.-Z. Yang, Appl. Phys. Lett. 92, 122903 (2008).

    Article  ADS  Google Scholar 

  33. K. B. Jinesh, Y. Lamy, J. H. Klootwijk, and W. F. A. Besling, Appl. Phys. Lett. 95, 122903 (2009).

    Article  ADS  Google Scholar 

  34. D. O’Neill, R. M. Bowman, and J. M. Gregg, Appl. Phys. Lett. 77, 1520 (2000).

    Article  ADS  Google Scholar 

  35. V. M. Fridkin, Ferroelectric Semiconductors (Nauka, Moscow, 1976).

    Google Scholar 

  36. T. Ohta, A. Klust, J. A. Adams, Q. Yu, M. A. Olmstead, and F. S. Ohuchi, Phys. Rev. B 69, 125322 (2004).

    Article  ADS  Google Scholar 

  37. A. B. Vorob’ev, V. Ya. Prinz, Yu. S. Yukecheva, and A. I. Toropov, Physica E 23, 171 (2004).

    Article  ADS  Google Scholar 

  38. A. Humberta, F. Salvana, and C. Moutteta, Surf. Sci. 181, 307 (1987).

    Article  ADS  Google Scholar 

  39. A. I. Dmitriev, V. M. Kaminskii, G. V. Lashkarev, P. E. Butorin, Z. D. Kovalyuk, V. I. Ivanov, and A. I. Beskrovnyi, Fiz. Tverd. Tela 51, 2207 (2009) [Phys. Solid State 51, 2342 (2009)].

    Google Scholar 

  40. O. V. Pupysheva, A. V. Dmitriev, A. A. Farajian, H. Mizuseki, and Y. Kawazoe, J. Appl. Phys. 100, 033718 (2006).

    Article  ADS  Google Scholar 

  41. S. I. Drapak, S. V. Gavrilyuk, and Z. D. Kovalyuk, Pis’ma Zh. Tekh. Fiz. 35(12), 66 (2009) [Tech. Phys. Lett. 35, 569 (2009)].

    Google Scholar 

  42. P. N. Brounkov, T. Benyattou, G. Guillot, and S. A. Clarc, J. Appl. Phys. 77, 240 (1995).

    Article  ADS  Google Scholar 

  43. L. Qiao and X. Bi, Appl. Phys. Lett. 92, 214101 (2008).

    Article  ADS  Google Scholar 

  44. C. He, C. Gao, Y. Ma, M. Li, A. Hao, X. Huang, B. Liu, D. Zhang, C. Yu, G. Zou, Y. Li, H. Li, X. Li, and J. Liu, Appl. Phys. Lett. 91, 092124 (2007).

    Article  ADS  Google Scholar 

  45. J. Fraxedas, S. Garcia-Manyes, P. Gorostiza, and F. Sanz, Proc. Natl. Acad. Sci. USA 99, 5228 (2002).

    Article  ADS  Google Scholar 

  46. Y. Fan, M. Bauer, L. Kador, K. R. Allakhverdiev, and E. Yu. Salaev, J. Appl. Phys. 91, 1081 (2002).

    Article  ADS  Google Scholar 

  47. A. Baidullaeva, Z. K. Vlasenko, B. K. Dauletmuratov, L. F. Kuzan, and P. E. Mozol’, Fiz. Tekh. Poluprovodn. 39, 405 (2005) [Semiconductors 39, 381 (2005)].

    Google Scholar 

  48. A. A. Urusovskaya, V. I. Al’shits, N. N. Bekkauer, and A. E. Smirnov, Fiz. Tverd. Tela 42, 267 (2000) [Phys. Solid State 42, 274 (2000)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Bakhtinov.

Additional information

Original Russian Text © A.P. Bakhtinov, V.N. Vodopyanov, Z.D. Kovalyuk, V.V. Netyaga, D.Yu. Konoplyanko, 2011, published in Fizika i Tekhnika Poluprovodnikov, 2011, Vol. 45, No. 3, pp. 348–359.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakhtinov, A.P., Vodopyanov, V.N., Kovalyuk, Z.D. et al. Carrier transport in layered semiconductor (p-GaSe)-ferroelectric (KNO3) composite nanostructures. Semiconductors 45, 338–349 (2011). https://doi.org/10.1134/S1063782611030067

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782611030067

Keywords

Navigation