Skip to main content
Log in

Spin-peierls transition in the random impurity sublattice of a semiconductor

  • Electrical and Optical Properties of Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

A study of electron spin resonance in uncompensated Ge:As semiconductor samples in the vicinity of the insulator-metal second-order phase transiti on reveals that the interaction of spins localized at As atoms brings about a distortion of the crystal lattice and enhances the localization. This effect occurs in the range of electron concentrations n = 3 × 1017—3.7 × 1017 cm-3, just below the critical point of the phase transition. The effect is explained in the context of a model considering the spin-Peierls transition in the random impurity sublattice of the semiconductor, and its features, as compared to other known materials where the spin-Peierls transition is observed, are understood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. F. Mott, Metal-Insulator Transitions (London, Tailor Francis, 1974; Moscow, Nauka, 1979).

    Google Scholar 

  2. B. I. Shklovskii and A. L. Éfros, Electronic Properties of Doped Semiconductors (Nauka, Moscow, 1979; Springer, New York, 1984).

    Google Scholar 

  3. A. G. Zabrodskii, Phil. Mag. 588, 1131 (2001).

    Article  Google Scholar 

  4. A. I. Veinger, A. G. Zabrodskii, T. V. Tisnek, and S. I. Goloshchapov, Fiz. Tekh. Poluprovodn. 41, 812 (2007) [Semiconductors 41, 666 (2007)].

    Google Scholar 

  5. A. I. Veinger, A. G. Zabrodskii, T. V. Tisnek, and S. I. Goloshchapov, Fiz. Tekh. Poluprovodn. 42, 1301 (2008) [Semiconductors 42, 1274(2008)].

    Google Scholar 

  6. A. I. Veinger, A. G. Zabrodskii, T. V. Tisnek, and S. I. Goloshchapov, Fiz. Tekh. Poluprovodn. 34, 46 (2000) [Semiconductors 34, 45 (2000)].

    Google Scholar 

  7. A. G. Zabrodskii, A. I. Veinger, T. V. Tisnek, and S. I. Goloshchapov, Phys. Stat. Solidi C 5, 824 (2008).

    Article  Google Scholar 

  8. D. K. Wilson, Phys. Rev. A 134, 265 (1964).

    Article  ADS  Google Scholar 

  9. R. E. Peierls, Quantum Theory of Solids (Clarendon, Oxford, 1955; Moscow, IIL, 1956).

    MATH  Google Scholar 

  10. L. N. Bulaevskii, Usp. Fiz. Nauk 115, 263 (1975) [Sov. Phys. Usp. 18, 131(1975)].

    Google Scholar 

  11. A.I. Buzdin and L. N. Bulaevskii, Usp. Fiz. Nauk 131, 495 (1980) [Sov. Phys. Usp. 23, 409 (1980)].

    Google Scholar 

  12. M. Hase, I. Terasaki, and K. Uchinokura, Phys. Rev. Lett. 70, 3651 (1993).

    Article  ADS  Google Scholar 

  13. M. Isobe and Y. Ueda, J. Phys. Soc. Jpn. 65, 1178 (1996).

    Article  ADS  Google Scholar 

  14. A. P. Ramirez, B. S. Shastry, A. Hayashi, J. J. Krajewski, D. A. Huse, and R. J. Cava, Phys. Rev. Lett. 89, 067202 (2002).

    Article  ADS  Google Scholar 

  15. A. N. Vasil’ev, Priroda, No. 12, 33 (1997).

    Google Scholar 

  16. C. P. Poole, Electron Spin Resonance: Comprehensive Treatise on Experimental Techniques (Wiley, New York, London, Sydney, 1967; Moscow, Mir, 1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Veinger.

Additional information

Original Russian Text © A.I. Veinger, A.G. Zabrodskii, T.V. Tisnek, S.I. Goloshchapov, 2010, published in Fizika i Tekhnika Poluprovodnikov, 2010, Vol. 44, No. 6, pp. 735–741.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veinger, A.I., Zabrodskii, A.G., Tisnek, T.V. et al. Spin-peierls transition in the random impurity sublattice of a semiconductor. Semiconductors 44, 705–711 (2010). https://doi.org/10.1134/S1063782610060035

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782610060035

Keywords

Navigation