Skip to main content
Log in

Current-voltage characteristics of silicon-doped GaAs nanowhiskers with a protecting AlGaAs coating overgrown with an undoped GaAs layer

  • Low-Dimensional Systems
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

A technique for measurement of longitudinal current-voltage characteristics of semiconductor nanowhiskers remaining in contact with the growth surface is suggested. The technique is based on setting up a stable conductive contact between the top of a nanowhisker and the probe of an atomic-force microscope. It is demonstrated that, as the force pressing the probe against the top of the nanowhisker increases, the natural oxide layer covering the top is punctured and a direct contact between the probe and the nanowhisker body is established. In order to prevent nanowhiskers from bending and, ultimately, breaking, they need to be somehow fixed in space. In this study, GaAs nanowhiskers were kept fixed by partially overgrowing them with a GaAs layer. To isolate nanowhiskers from the matrix they were embedded in, they were coated by a nanometer layer of AlGaAs. Doping of GaAs nanowhiskers with silicon was investigated. The shape of the current-voltage characteristics obtained indicates that introduction of silicon leads to p-type conduction in nanowhiskers, in contrast to n-type conduction in bulk GaAs crystals grown by molecular-beam epitaxy. This difference is attributed to the fact that the vapor-liquid-solid process used to obtain nanowhiskers includes a final stage of liquid-phase epitaxy, a characteristic of the latter being p-type conduction obtained in bulk GaAs(Si) crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Li, J. Xiang, F. Quang, S. Gradecak, Y. Wu, H. Yan, D. A. Blom, and C. M. Lieber, NanoLett. 6, 1468 (2006).

    ADS  Google Scholar 

  2. B. J. Ohlsson, M. T. Bjork, M. H. Magnusson, K. Deppert, L. Samuelson, and L. R. Wallenberg, Appl. Phys. Lett. 79, 3335 (2001).

    Article  ADS  Google Scholar 

  3. M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, Appl. Phys. Lett. 80, 1058 (2002).

    Article  ADS  Google Scholar 

  4. H. Sakaki, Jpn. J Appl. Phys. 19, 1735 (1980).

    Article  ADS  Google Scholar 

  5. R. B. Markus, T. S. Ravi, T. Gimmer, K. Chin, D. Liu, W. J. Orvis, D. R. Ciarlo, C. E. Hunt, and J. Trujilo, Appl. Phys. Lett. 56, 236 (1990).

    Article  ADS  Google Scholar 

  6. E. I. Givargizov, A. N. Stepanova, L. N. Obolenskaya, E. S. Mashkova, V. A. Molchanov, M. E. Givargizov, and I. W. Rangelov, Ultramicroscopy 82, 57 (2000).

    Article  Google Scholar 

  7. C. M. Lieber, Nature Biotechnology 23, 1294 (2005).

    Article  Google Scholar 

  8. Q. Wang, Q. H. Li, Y. J. Chen, T. H. Wang, C. L. He, J. P. Li, and C. L. Lin, Appl. Phys. Lett. 84, 3654 (2008).

    ADS  Google Scholar 

  9. E. I. Givargizov and A. A. Chernov, Kristallografiya 18,147 (1973) [Sov. Phys. Crystallogr. 18, 89 (1973)].

    Google Scholar 

  10. L. Schubert, P. Werner, N. D. Zakharov, G. Gerth, F. M. Kolb, L. Long, U. Goesele, and T. Y. Tan, Appl. Phys. Lett. 84, 4968 (2004).

    Article  ADS  Google Scholar 

  11. G. E. Cirlin, V. G. Dubrovskii, N. V. Sibirev, I. P. Soshnikov, Yu. B. Samsonenko, A. A. Tonkikh, and V. M. Ustinov, Fiz. Tekh. Poluprovodn. 39, 587 (2005) [Semiconductors 39, 547 (2005)].

    Google Scholar 

  12. V. G. Dubrovskii, I. P. Soshnikov, N. V. Sibirev, G. E. Cirlin, and V. M. Ustinov, J. Cryst. Growth 289, 31 (2006).

    Article  ADS  Google Scholar 

  13. M. Tchernycheva, J. C. Harmand, G. Patriarche, L. Travers, and G. E. Cirlin, Nanotechnology 17, 4025 (2006).

    Article  ADS  Google Scholar 

  14. V. G. Dubrovskii, I. P. Soshnikov, N. V. Sibirev, G. E. Cirlin, A. A. Tonkikh, Yu. B. Samsonenko, and V. M. Ustinov, Phys. Rev. B 71, 105325 (2005).

    Article  ADS  Google Scholar 

  15. G. Patriarch, F. Glas, M. Tchernycheva, C. Sartel, L. Largeau, J. C. Harmand, and G. E. Cirlin, Nano-Lett. 8, 1638 (2008).

    Article  ADS  Google Scholar 

  16. V. G. Dubrovskii, G. E. Cirlin, and V. M. Ustinov, Fiz. Tekh. Poluprovodn. 43, 1585 (2009) [Semiconductors 43, 1539 (2009)].

    Google Scholar 

  17. X. Duan, Yu Huang, Yi Cui, J. Wang, and Ch. M. Lieber, Nature 409, 66 (2001).

    Article  ADS  Google Scholar 

  18. K. Haraguchi, T. Katsuyama, K. Hiruma, and K. Ogawa, Appl. Phys. Lett. 60, 745 (1991).

    Article  ADS  Google Scholar 

  19. R. P. Lu, K. L. Kavanagh, St. J. Dixon-Warren, A. J. Spring Thorpe, R. Streater, and I. Calder, J. Vac. Sci. Technol. B 20, 1682 (2002).

    Article  Google Scholar 

  20. E. H. Roderick and R. H. Williams, Metal-Semiconductor Contacts (Clarendon, Oxford, 1988; Radio i svyaz’, Moscow, 1982).

    Google Scholar 

  21. A. V. Ankudinov, V. P. Evtikhiev, V. E. Tokranov, V. P. Ulin, and A. N. Titkov, Fiz. Tekh. Poluprovodn. 33, 594 (1999) [Semiconductors 33, 555 (1999)].

    Google Scholar 

  22. J. E. Northrup and S. B. Zhang, Phys. Rev. B 47, 6791 (1993).

    Article  ADS  Google Scholar 

  23. R. Murray, R. C. Newman, M. J. L. Sangster, R. B. Beali, J. J. Harris, P. J. Wright, J. Wagner, and M. Ramsteiner, J. Appl. Phys. 66, 2589 (1989).

    Article  ADS  Google Scholar 

  24. B. H. Ahn, R. R. Shurtz, and C. W. Trussel, J. Appl. Phys. 42, 4512 (1971).

    Article  ADS  Google Scholar 

  25. L. Ouattara, A. Mikkelsen, N. Skold, J. Eriksson, T. H. Knaapen, E. Cavar, W. Seifert, L. Samuelson, and E. Lundren, NanoLett. 7, 2861 (2007).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Dunaevskii.

Additional information

Original Russian Text © P.A. Dementyev, M.S. Dunaevskii, Yu.B. Samsonenko, G.E. Cirlin, A.N. Titkov, 2010, published in Fizika i Tekhnika Poluprovodnikov, 2010, Vol. 44, No. 5, pp. 636–641.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dementyev, P.A., Dunaevskii, M.S., Samsonenko, Y.B. et al. Current-voltage characteristics of silicon-doped GaAs nanowhiskers with a protecting AlGaAs coating overgrown with an undoped GaAs layer. Semiconductors 44, 610–615 (2010). https://doi.org/10.1134/S1063782610050118

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782610050118

Keywords

Navigation