Skip to main content
Log in

Features of self-activated luminescence spectra of CdS:O in the context of band anticrossing theory

  • Electrical and Optical Properties of Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The interpretation of the nature of self-activated luminescence spectra of CdS:O is given on the basis of the band anticrossing theory, making it possible to take into account the effect of isoelectron oxygen impurity on the modification of the band structure. The bands of self-activated luminescence (SA and SAL) of CdS:O similar to those of ZnS-ZnSe:O are revealed. In the presence of dissolved oxygen OS, the presence of two additional H and L components is revealed in the composition of SA bands, which are owed to the transitions from E + and E subbands of the CdS:O split conduction band to the recombination level E SA. Their spectral dependence on the dissolved-oxygen concentration [OS] is determined. It is shown that the CdS green edge emission is similar to that of SAL; however, in contrast to ZnS-ZnSe:O, there is no H component in the fundamental-absorption region of the crystal. The analysis of the composition of the SA and SAL centers in the CdS crystals shows their equivalence to ZnS(ZnSe). From the experimental data, the position of the oxygen localized level E 0, a decrease in the band gap E g with [OS], and the band model of CdS:O are found. This study supplements similar investigations carried out previously for ZnS-ZnSe:O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. M. Yu, W. Walukiewicz, J. Wu, W. Shan, J. W. Beeman, M. A. Scarpulla, O. D. Dubon, and P. Becla, Phys. Rev. Lett. 91, 246403 (2003).

    Article  ADS  Google Scholar 

  2. W. Sahn, W. Walukiewicz, J. W. Ager III, E. E. Haller, J. F. Geisz, D. J. Friedman, and J. M. Olson, Phys. Rev. Lett. 82, 1221 (1999).

    Article  ADS  Google Scholar 

  3. J. Wu, W. Walukiewicz, and E. E. Haller, Phys. Rev. B 65, 233210 (2002).

    Article  ADS  Google Scholar 

  4. D. A. Mideros, Candidate’s Dissertation (Mosc. Energ. Inst., Moscow, 2008).

  5. N. K. Morozova, I. A. Karetnikov, K. V. Golub, N. D. Danilevich, V. M. Lisitsyn, and V. I. Oleshko, Fiz. Tekh. Poluprovodn. 39, 513 (2005) [Semiconductors 39, 485 (2005)].

    Google Scholar 

  6. N. K. Morozova, D. A. Mideros, E. M. Gavrishchuk, and V. G. Galstyan, Fiz. Tekh. Poluprovodn. 42, 131 (2008) [Semiconductors 42, 131 (2008)].

    Google Scholar 

  7. N. K. Morozova, D. A. Mideros, V. G. Galstyan, and E. M. Gavrishchuk, Fiz. Tekh. Poluprovodn. 42, 1039 (2008) [Semiconductors 42, 1023 (2008)].

    Google Scholar 

  8. N. K. Morozova, D. A. Mideros, and N. D. Danilevich, Fiz. Tekh. Poluprovodn. 43, 174 (2009) [Semiconductors 43, 162 (2009)].

    Google Scholar 

  9. N. K. Morozova, V. G. Galstyan, N. D. Danilevich, and V. M. Semenov, Izv. Vyssh. Uchebn. Zaved. Élektron., No. 1(75), 3 (2009).

    Google Scholar 

  10. N. K. Morozova, N. D. Danilevich, and V. M. Semenov, in Proc. of the 39th Intern. Sci.-Tech. Work Shop on Noise and Degradation Processes in Semiconductor Devices (Mosc. Energ. Inst., Moscow, 2009), p. 132.

    Google Scholar 

  11. N. K. Morozova, V. V. Blinov, E. M. Gavrishchuk, V. G. Galstyan, V. G. Plotnichenko, I. A. Karetnikov, and V. S. Zimogorskii, Neorg. Mater. 37, 1439 (2001) [Inorg. Mater. 37, 1227 (2001)].

    Google Scholar 

  12. N. K. Morozova, I. A. Karetnikov, and E. M. Gavrishchuk, Neorg. Mater. 35, 917 (1999) [Inorg. Mater. 35, 775 (1999)].

    Google Scholar 

  13. Physics and Chemistry of II–VI Compounds, Ed. by S. A. Medvedev (Mir, Moscow, 1970) [in Russian].

    Google Scholar 

  14. V. A. Teplitskii, Candidate’s Dissertation (Mosc. Energ. Inst., Moscow, 1989).

  15. N. K. Morozova, A. V. Morozov, L. D. Nazarova, N. D. Danilevich, and I. A. Karetnikov, Fiz. Tekh. Poluprovodn. 28, 1699 (1994) [Semiconductors 28, 944 (1994)].

    Google Scholar 

  16. A. V. Morozov, Candidate’s Dissertation (Mosc. Energ. Inst., Moscow, 1993).

  17. V. S. Zimogorskii, N. A. Yashtulov, and V. V. Blinov, in Proc. of the 30th Intern. Sci.-Tech. Seminar on Noise and Degradation Processes in Semiconductor Devices (Mosc. Energ. Inst., Moscow, 2000).

    Google Scholar 

  18. N. K. Morozova, A. V. Morozov, and V. S. Zimogorskii, Neorg. Mater. 29, 1014 (1993).

    Google Scholar 

  19. D. A. Mideros, Nguen Chan Kha, and N. K. Morozova, in Proc. of the 38th Intern. Sci.-Tech. Seminar on Noise and Degradation Processes in Semiconductor Devices (Mosc. Energ. Inst., Moscow, 2008), p. 138.

    Google Scholar 

  20. Jingo Li and Su-Huai Wei, Phys. Rev. B 73, 041201 (2006).

    Article  ADS  Google Scholar 

  21. M. Yu. Rebrov, V. T. Bublik, T. A. Teplitskii, and E. V. Markov, Dokl. AN SSSR, Ser. Fiz. 307, 597 (1989).

    Google Scholar 

  22. N. K. Morozova and D. A. Mideros, Izv. Vyssh. Uchebn. Zaved., Ser. Élektron., No. 3, 3 (2008).

  23. K. Akimoto, T. Miyajima, and Y. Mori, Phys. Rev. B 39,3138 (1989).

    Article  ADS  Google Scholar 

  24. I. V. Ostrovskii, Soros. Obrazov. Zh. Fiz., No. 1, 95 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.K. Morozova, N.D. Danilevich, 2010, published in Fizika i Tekhnika Poluprovodnikov, 2010, Vol. 44, No. 4, pp. 458–462.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morozova, N.K., Danilevich, N.D. Features of self-activated luminescence spectra of CdS:O in the context of band anticrossing theory. Semiconductors 44, 438–443 (2010). https://doi.org/10.1134/S1063782610040056

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782610040056

Keywords

Navigation