Skip to main content
Log in

Precipitation of boron in silicon on high-dose implantation

  • Atomic Structure and Nonelectronic Propertties of Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Precipitation of boron implanted in silicon with a dose of 1 × 1016 cm−2 is studied in relation to the concentration of substitutional boron \( C_{B_0 } \) introduced before implantation and before subsequent annealing at 900°C. It is shown that \( C_{B_0 } \) = 2.5 × 1020 cm−3 is the critical concentration, at which the formation of precipitates is independent of the concentration of point defects introduced by implantation (far from or close to the mean projected range R p ) and constitutes the prevailing channel of deactivation of boron. At lower concentrations \( C_{B_0 } \) close to the equilibrium concentration, precipitation is observed only far from R p , in the regions of reduced concentrations of point defects. At the same time, in the region of R p with a high concentration of point defects, most boron atoms are drawn into clustering with intrinsic interstitial atoms with the formation of dislocation loops and, thus, become electrically inactive as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. K. Hofker, H. W. Werner, D. P. Osthoek, and N. J. Koeman, Appl. Phys. 4, 125 (1974).

    Article  ADS  Google Scholar 

  2. E. Landi, A. Armigliato, S. Solmi, R. Kogler, and E. Wieser, Appl. Phys. A 47, 359 (1988).

    Article  ADS  Google Scholar 

  3. S. Solmi, E. Landi, and F. Baruffaldi, J. Appl. Phys. 68, 3250 (1990).

    Article  ADS  Google Scholar 

  4. A. Aseev, L. Fedina, D. Hoehl, and H. Barch, Clusters of Interstitial Atoms in Silicon and Germanium (Academy Verlag, Berlin, 1994; Nauka, Novosibirsk, 1991).

    Google Scholar 

  5. L. I. Fedina and A. L. Aseev, Fiz. Tverd. Tela 32, 60 (1990) [Sov. Phys. Solid State 32, 33 (1990)].

    Google Scholar 

  6. G. Mannino, V. Privitera, S. Solmi, and N. Cowern, Nucl. Instrum. Methods Phys. Res. B 186, 246 (2002).

    Article  ADS  Google Scholar 

  7. E. J. Collart, A. J. Murrell, M. A. Foad, J. A. van den Berg, S. Zhang, D. Armour, R. D. Goldberg, T. S. Wang, A. G. Cullis, T. Clarysse, and W. Vandervorst, J. Vac. Technol. B 18, 435 (2000).

    Article  Google Scholar 

  8. F. Cristiano, X. Hebras, N. Cherkashin, A. Claverie, W. Lerch, and S. Paul, Appl. Phys. Lett. 83, 5407 (2003).

    Article  ADS  Google Scholar 

  9. L. Pelaz, G. H. Gilmer, H.-J. Gossmann, C. S. Rafferty, M. Jaraiz, and J. Barbolla, Appl. Phys. Lett. 74, 3657 (1999).

    Article  ADS  Google Scholar 

  10. W. Windl, Xiang-Yang Liu, and M. P. Masquelier, Phys. Stat. Solidi B 226, 37 (2001).

    Article  ADS  Google Scholar 

  11. A. L. Aseev, V. M. Astachov, O. P. Pcheljakov, J. Heydenreich, G. Kastner, and D. Hoehl, Cryst. Res. Technol. 14, 1405 (1979).

    Google Scholar 

  12. S. Takeda, M. Kohyama, and K. Ibe, Phil. Mag. A 70, 287 (1994).

    Article  ADS  Google Scholar 

  13. D. J. Eaglesham, P. A. Stolk, H.-J. Gossmann, T. E. Haynes, and J. M. Poate, Nucl. Instrum. Methods Phys. Res. B 106, 191 (1995).

    Article  ADS  Google Scholar 

  14. L. Fedina, A. Gutakovskii, A. Aseev, J. van Landuyt, and J. Vanhellemont, Phys. Stat. Solidi A 171, 147 (1999).

    Article  ADS  Google Scholar 

  15. L. Fedina and A. Aseev, Phys. Status Solidi A 95, 517 (1986).

    Article  ADS  Google Scholar 

  16. S. M. Myers, G. A. Petersen, T. H. Headley, J. R. Michael, T. S. Aselage, and C. H. Seager, Nucl. Instrum. Methods Phys. Res. B 127–128, 291 (1997).

    Article  Google Scholar 

  17. I. Mizushima, Y. Mitani, M. Koike, M. Yoshiki, M. Tomita, and Kambayashi, Jpn. J. Appl. Phys. 37, 1171 (1998).

    Article  ADS  Google Scholar 

  18. J. Xia, T. Saito, R. Kim, T. Aoki, Y. Kamakura, and K. Taniguchi, Appl. Phys. 85, 7597 (1999).

    Article  Google Scholar 

  19. A. M. Myasnikov, V. I. Obodnikov, V. G. Seryapin, E. G. Tishkovskii, B. I. Fomin, and E. I. Cherepov, Fiz. Tekh. Poluprovodn. 31, 703 (1997) [Semiconductors 31, 600 (1997)].

    Google Scholar 

  20. V. I. Obodnikov and E. G. Tishkovskii, Fiz. Tekh. Poluprovodn. 32, 417 (1998) [Semiconductors 32, 372 (1998)].

    Google Scholar 

  21. J. Zhu, T. D. dela Rubia, L. H. Yang, C. Mailhiot, and G. H. Gilmer, Phys. Rev. B 54, 4741 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Feklistov.

Additional information

Original Russian Text © K.V. Feklistov, L.I. Fedina, A.G. Cherkov, 2010, published in Fizika i Tekhnika Poluprovodnikov, 2010, Vol. 44, No. 3, pp. 302–305.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feklistov, K.V., Fedina, L.I. & Cherkov, A.G. Precipitation of boron in silicon on high-dose implantation. Semiconductors 44, 285–288 (2010). https://doi.org/10.1134/S1063782610030024

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782610030024

Keywords

Navigation