Skip to main content
Log in

Numerical simulation of the process of hydrogenation of GaAs

  • Fabrication, Treatment, and Testing of Materials and Structures
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The evolution of concentration profiles for all types of hydrogen particles, charge carriers, and active dopants in the surface region of p-GaAs during hydrogenation is simulated. The numerical experiment is conducted on the basis of the least-simplified comprehensive mathematical model. The regular trends in accumulation and transport of hydrogen particles and the role of the electric field in these processes are discussed. The numerical and analytical calculations serve to validate the small efficiency of formation for hydrogen-dopant complexes at typical temperatures of hydrogenation for GaAs (T > 150°C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Paccagnella, A. Callegari, E. Latta, and M. Gasser, Appl. Phys. Lett. 55, 259 (1989).

    Article  ADS  Google Scholar 

  2. V. G. Bozhkov, V. A. Kagadei, and N. A. Torkhov, Fiz. Tekh. Poluprovodn. 32, 1343 (1998) [Semiconductors 32, 1196 (1998)].

    Google Scholar 

  3. N. A. Torkhov, Fiz. Tekh. Poluprovodn. 36, 437 (2002) [Semiconductors 36, 414 (2002)].

    Google Scholar 

  4. V. A. Kagadei, E. V. Nefedtsev, D. I. Proskurovsky, et al., Pis’ma Zh. Tekh. Fiz. 29, 40 (2003) [Tech. Phys. Lett. 29, 897 (2003)].

    Google Scholar 

  5. O. V. Aleksandrov, Fiz. Tekh. Poluprovodn. 36, 24 (2002) [Semiconductors 36, 21 (2002)].

    Google Scholar 

  6. R. Rizk, P. de Mierry, D. Ballutaud, et al., Phys. Rev. B 44, 6141 (1991).

    Article  ADS  Google Scholar 

  7. D. Mathiot, Phys. Rev. B 40, 5867 (1989).

    Article  ADS  Google Scholar 

  8. J. Weber, S. Knack, O. V. Feklisova, et al., Microelectronic Eng. 66, 320 (2003).

    Article  Google Scholar 

  9. O. Feklisova, S. Knack, E. B. Yakimov, et al., Physica B 308–310, 213 (2001).

    Article  Google Scholar 

  10. E. D. Gornushkina and R. Sh. Malkovich, Élektron. Tekhn. Mater., No. 7, 73 (1991).

  11. R. A. Morrow, J. Appl. Phys. 66, 2973 (1989).

    Article  ADS  Google Scholar 

  12. N. S. Rytova, Fiz. Tekh. Poluprovodn. 25, 990 (1991) [Sov. Phys. Semicond. 25, 598 (1991)].

    Google Scholar 

  13. M. C. Wagener, J. R. Botha, and A. W. R. Leitch, Phys. Rev. 60, 1752 (1959).

    Google Scholar 

  14. J. Mimila-Arroyo and S. W. Bland, Mod. Phys. Lett. B 15(17–19), 585 (2001).

    Article  ADS  Google Scholar 

  15. T. Zundel and J. Weber, Phys. Rev. B 43, 4361 (1991).

    Article  ADS  Google Scholar 

  16. P. Atkins, Physical Chemistry (Oxford Univ., Oxford, 2002; Mir, Moscow, 1980), vol. 2.

    Google Scholar 

  17. A. Bonapasta, M. Capizzi, and P. Giannozzi, Phys. Rev. B 59, 4869 (1999).

    Article  ADS  Google Scholar 

  18. S. J. Pearton, C. R. Albenathy, and J. Lopata, Appl. Phys. Lett. 59, 3571 (1991).

    Article  ADS  Google Scholar 

  19. J. Bourgoin and M. Lanno, Point Defects in Semiconductors (Springer, Berlin, 1983; Mir, Moscow, 1985).

    Google Scholar 

  20. M. Lampert and P. Mark, Current Injection in Solids (Academic, New York, 1970; Mir, Moscow, 1973).

    Google Scholar 

  21. S. J. Pearton, W. C. Dautremont-Smith J. Chevallier, et al., J. Appl. Phys. 58, 2821 (1986).

    Article  ADS  Google Scholar 

  22. J. Chevallier, W. C. Dautremont-Smith, C. W. Tu, and S. J. Pearton, Appl. Phys. Lett. 47, 108 (1985).

    Article  ADS  Google Scholar 

  23. V. A. Kagadei, E. V. Nefyodtsev, and D. I. Proskurovsky, J. Vac. Sci. Technol. A 19, 1871 (2001).

    Article  ADS  Google Scholar 

  24. J. Weber, S. J. Pearton, and W. C. Dautremont-Smith, Appl. Phys. Lett. 49, 1181 (1985).

    Article  ADS  Google Scholar 

  25. A. A. Balmashnov, K. S. Golovanivskii, É. K. Kamps, et al., Pis’ma Zh. Tekh. Fiz. 12, 1486 (1986) [Sov. Tech. Phys. Lett. 12, 615 (1986)].

    Google Scholar 

  26. É. M. Omel’yanovskii, A. V. Pakhomov, and A. Ya. Polyakov, Fiz. Tekh. Poluprovodn. 21, 842 (1987) [Sov. Phys. Semicond. 21, 514 (1987)].

    Google Scholar 

  27. B. Pajot, Inst. Phys. Ser., No. 95, Chap. 7, 437 (1989).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Nefyodtsev.

Additional information

Original Russian Text © V.A. Kagadei, E.V. Nefyodtsev, 2009, published in Fizika i Tekhnika Poluprovodnikov, 2009, Vol. 43, No. 1, pp. 128–135.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kagadei, V.A., Nefyodtsev, E.V. Numerical simulation of the process of hydrogenation of GaAs. Semiconductors 43, 121–129 (2009). https://doi.org/10.1134/S1063782609010242

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782609010242

PACS numbers

Navigation