Skip to main content
Log in

Methylthiol adsorption on GaAs(100)-(2 × 4) surface: Ab initio quantum-chemical analysis

  • Semiconductor Structures, Interfaces, and Surfaces
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Quantum-chemical cluster calculations within the density functional theory are performed to study the mechanism of adsorption of the methylthiol molecule CH3SH on an As-As dimer on a GaAs (100) surface. It is shown that the adsorption of the molecule can proceed through dissociation of either the S-H or C-S bond. The lowest energy has the state of dissociative adsorption with the rupture of the C-S bond resulting in the formation of a methane molecule and sulfur adatom incorporated between surface arsenic atoms constituting the dimer. A somewhat higher energy has the state of dissociative adsorption with the rupture of the S-H bond. In this state the CH3S-radical is adsorbed at an arsenic atom constituting dimer and the hydrogen atom is adsorbed at a gallium atom bonded to this arsenic atom. These two states provide chemical and electronic passivation of the semiconductor surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. V. Alfimov, Izv. Ross. Akad. Nauk, Ser. Khim., No. 7, 1303 (2004).

  2. S. F. Bent, J. Phys. Chem. B 106, 2830 (2002).

    Article  Google Scholar 

  3. A. Vilan and D. Cahen, Trends Biotechnol. 20, 22 (2002).

    Article  Google Scholar 

  4. S. Lodha and D. B. Janes, J. Appl. Phys. 100, 024503 (2006).

    Google Scholar 

  5. T. Minari, Y. Miyata, M. Terayama, et al., Appl. Phys. Lett. 88, 083 514 (2006).

  6. L. Mohaddes-Ardabili, L.J. Martĭnez-Miranda, J. Silverman, et al., Appl. Phys. Lett. 83, 192 (2003).

    Article  ADS  Google Scholar 

  7. Y. Cho and A. Ivanisevic, J. Phys. Chem. B 109, 12731 (2005).

    Google Scholar 

  8. K.-Y. Park, S.-W. Han, M.-S. Kim, and S.-Y. Choi, Electron. Lett. 40, 203 (2004).

    Article  Google Scholar 

  9. A. Vilan, A. Shanzer, and D. Cahen, Nature 40, 4166 (2000).

    Google Scholar 

  10. N. Papageorgiou, Y. Ferro, J. M. Layet, et al., Appl. Phys. Lett. 82, 2518 (2003).

    Article  ADS  Google Scholar 

  11. I. Nevo and S. R. Cohen, Surf. Sci. 583, 297 (2005).

    ADS  Google Scholar 

  12. M. P. Stewart, F. Maya, D. V. Kosynkin, et al., J. Am. Chem. Soc. 126, 370 (2004).

    Article  Google Scholar 

  13. A. M. Botelho do Rego, A. M. Ferraria, J. E. Beghdadi, et al., Langmuir 21, 8765 (2005).

    Article  Google Scholar 

  14. S. R. Lunt, G. N. Ryba, P. G. Santangelo, and N. S. Lewis, J. Appl. Phys. 70, 7449 (1991).

    Article  ADS  Google Scholar 

  15. C. L. McGuiness, A. Shaporenko, M. Zharnikov, et al., J. Phys. Chem. C 111, 4226 (2007).

    Article  Google Scholar 

  16. F. Seker, K. Meeker, T. F. Kuech, and A. B. Ellis, Chem. Rev. 100, 2505 (2000).

    Article  Google Scholar 

  17. S. M. Luber, K. Adlkofer, U. Rant, et al., Physica E 21, 1111 (2004).

    Article  ADS  Google Scholar 

  18. E. Sackmann and M. Tanaka, Trends Biotechnol. 18, 58 (2000).

    Article  Google Scholar 

  19. K. Adlkofer and M. Tanaka, Langmuir 17, 4267 (2001).

    Article  Google Scholar 

  20. Y. Jun, X. Y. Zhu, and J. W. P. Hsu, Langmuir 22, 3627 (2006).

    Article  Google Scholar 

  21. A. Shaporenko, K. Adlkofer, L. S. O. Johansson, et al., Langmuir 19, 4992 (2003).

    Article  Google Scholar 

  22. M. D. Pashley, Phys. Rev. B 40, 10481 (1989).

    Google Scholar 

  23. Q. Fu, L. Li, and R. F. Hicks, Phys. Rev. B 61, 11034 (2000).

  24. Q. Fu, L. Li, C. H. Li, et al., J. Phys. Chem. B 104, 5595 (2000).

    Article  Google Scholar 

  25. M. V. Lebedev, Fiz. Tverd. Tela 48, 152 (2006) [Phys. Solid State 48, 164 (2006)].

    Google Scholar 

  26. J. W. P. Hsu, D. V. Lang, K. W. West, et al., J. Phys. Chem. B 109, 5719 (2005).

    Article  Google Scholar 

  27. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., GAUSSIAN 03: Revision C.01 (Gaussian Inc., Wallingford, CT, 2004).

    Google Scholar 

  28. J. P. Perdew, K. Burke, and Y. Wang, Phys. Rev. B 54, 16533 (1996).

  29. C. Adamo and V. Barone, J. Chem. Phys. 108, 664 (1998).

    Article  ADS  Google Scholar 

  30. G. Igel-Mann, H. Stoll, and H. Preuss, Mol. Phys. 65, 1321 (1988).

    Article  ADS  Google Scholar 

  31. A. Bergner, M. Dolg, W. Kuechle, et al., Mol. Phys. 80, 1431 (1993).

    Article  ADS  Google Scholar 

  32. R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules (Oxford Univ. Press, Oxford, 1989).

    Google Scholar 

  33. P. Geerlings, F. De Proft, and W. Langenaeker, Chem. Rev. 103, 1793 (2003).

    Article  Google Scholar 

  34. W. Yang and R. G. Parr, Proc. Natl. Acad. Sci. USA 82, 6723 (1985).

    Article  ADS  Google Scholar 

  35. C. E. Mitchell, I. G. Hill, A. B. McLean, and Z. H. Lu, Appl. Surf. Sci. 104/105, 434 (1996).

    Article  Google Scholar 

  36. V. L. Alperovich, O. E. Tereshchenko, N. S. Rudaya, et al., Appl. Surf. Sci. 235, 249 (2004).

    Article  ADS  Google Scholar 

  37. N. Camillone III, K. A. Khan, and R. M. Osgood, Surf. Sci. 453, 83 (2000).

    Article  ADS  Google Scholar 

  38. N. Camillone III, K. Abib, K. A. Khan, et al., J. Phys. Chem. B 106, 12491 (2002).

    Google Scholar 

  39. N. K. Singh and D. C. Doran, Surf. Sci. 422, 50 (1999).

    Article  ADS  Google Scholar 

  40. S. Donev, N. Brack, N. J. Paris, et al., Langmuir 21, 1866 (2005).

    Article  Google Scholar 

  41. O. Voznyy and J. J. Dubowski, J. Phys. Chem. B 110, 23619 (2006).

    Google Scholar 

  42. R. Osgood, Chem. Rev. 106, 4379 (2006).

    Article  Google Scholar 

  43. M. V. Lebedev, Th. Mayer, and W. Jaegermann, Surf. Sci. 547, 171 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Lebedev.

Additional information

Original Russian Text © M.V. Lebedev, 2008, published in Fizika i Tekhnika Poluprovodnikov, 2008, Vol. 42, No. 9, pp. 1065–1071.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebedev, M.V. Methylthiol adsorption on GaAs(100)-(2 × 4) surface: Ab initio quantum-chemical analysis. Semiconductors 42, 1048–1054 (2008). https://doi.org/10.1134/S1063782608090091

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782608090091

PACS numbers

Navigation