Skip to main content
Log in

Relaxation processes in a disordered Luttinger liquid

  • Low-Dimensional Systems
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The Luttinger liquid model, which describes interacting electrons in a single-channel quantum wire, is completely integrable in the absence of disorder and as such does not exhibit any relaxation to equilibrium. We consider relaxation processes induced by inelastic electron-electron interactions in a disordered Luttinger liquid, focusing on the equilibration rate and its essential differences from the electron-electron scattering rate as well as the rate of phase relaxation. In the first part of the paper, we review the basic concepts in a disordered Luttinger liquid at equilibrium. These include the elastic renormalization, dephasing, and interference-induced localization. In the second part, we formulate a conceptually important framework for systematically studying the nonequilibrium properties of a strongly correlated (non-Fermi) Luttinger liquid. We derive a coupled set of kinetic equations for the fermionic and bosonic distribution functions that describe the evolution of a nonequilibrium Luttinger liquid. Remarkably, the energy equilibration rate in the conducting disordered quantum wire (at sufficiently high temperature, when the localization effects are suppressed by dephasing) is shown to be on the order of the rate of elastic scattering off disorder, independent of the interaction constant and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. M. Auslaender, A. Yacoby, R. de Picciotto, et al., Phys. Rev. Lett. 84, 1764 (2000); Science 295, 825 (2002); O. M. Auslaender, H. Steinberg, A. Yacoby, et al., Science 308, 88 (2005).

    Article  ADS  Google Scholar 

  2. E. Levy, A. Tsukernik, M. Karpovski, et al., Phys. Rev. Lett. 97, 196802 (2006).

  3. S. V. Zaitsev-Zotov, Y. A. Kumzerov, Y. A. Firsov, and P. Monceau, J. Phys.: Condens. Matter 12, L303 (2000); Pis’ma Zh. Éksp. Teor. Fiz. 77, 162 (2003) [JETP Lett. 77, 135 (2003)].

    Article  ADS  Google Scholar 

  4. W. Kang, H. L. Stormer, L. N. Pfeiffer, et al., Nature 403, 59 (2000); I. Yang, W. Kang, K. W. Baldwin, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 92, 056802 (2004).

    Article  ADS  Google Scholar 

  5. M. Grayson, D. Schuh, M. Huber, et al., Appl. Phys. Lett. 86, 032101 (2005); M. Grayson, L. Steinke, D. Schuh, et al., Phys. Rev. B 76, 201304 (2007).

  6. S. Li, Z. Yu, C. Rutherglen, and P. J. Burke, Nano Lett. 4, 2003 (2004); H. T. Man and A. F. Morpurgo, Phys. Rev. Lett. 95, 026801 (2005); J. Wei, M. Shimogawa, Z. Wang, et al., Phys. Rev. Lett. 95, 256601 (2005); P. J. Leek, M. R. Buitelaar, V. I. Talyanskii, et al., Phys. Rev. Lett. 95, 256802 (2005); H. T. Man, I. J. W. Wever, and A. F. Morpurgo, Phys. Rev. B 73, 241401 (2006); M. Purewal, B. H. Hong, A. Ravi, et al., Phys. Rev. Lett. 98, 186808 (2007).

    Article  Google Scholar 

  7. A. N. Aleshin, H. J. Lee, Y. W. Park, and K. Akagi. Phys. Rev. Lett. 93, 196601 (2004); A. N. Aleshin, Adv. Math. 18, 17 (2006), and references therein.

  8. E. Slot, M. A. Holst, H. S. J. van der Zant, and S. V. Zaitsev-Zotov, Phys. Rev. Lett. 93, 176602 (2004).

    Google Scholar 

  9. L. Venkataraman, Y.S. Hong, and P. Kim. Phys. Rev. Lett. 96, 076601 (2006).

    Google Scholar 

  10. T. Giamarchi, Quantum Physics in One Dimension (Oxford Univ. Press, Oxford, 2004).

    MATH  Google Scholar 

  11. C. L. Kane and M. P. A. Fisher, Phys. Rev. B 46, 15233 (1992).

    Google Scholar 

  12. I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov, Phys. Rev. B 75, 085421 (2007).

    Google Scholar 

  13. P. W. Anderson, Phys. Rev. 109, 1492 (1958).

    Article  ADS  Google Scholar 

  14. M. E. Gertsenshtein and V. B. Vasil’ev, Radiotekh. Élektron. 4, 611 (1959); Teor. Veroyatn. Primen. 4, 424 (1959); Theor. Probab. Appl. 4, 391 (1959); N. F. Mott and W. D. Twose, Adv. Phys. 10, 107 (1961); V. L. Berezinskii, Zh. Éksp. Teor. Fiz. 65, 1251 (1973) [Sov. Phys. JETP 38, 620 (1974)]; A. A. Gogolin, V. I. Mel’nikov, and E. I. Rashba, Zh. Éksp. Teor. Fiz. 69, 327 (1975) [Sov. Phys. JETP 42, 168 (1975)]; D. J. Thouless, Phys. Rev. Lett. 39, 1167 (1977); A. A. Abrikosov and I. A. Ryzhkin, Adv. Phys. 27, 147 (1978); V. L. Berezinskii and L. P. Gor’kov, Zh. Éksp. Teor. Fiz. 77, 2498 (1979) [Sov. Phys. JETP, 50, 1209 (1979)]; A. A. Gogolin, Phys. Rep. 86, 1 (1982); L. P. Gor’kov, O. N. Dorokhov, and F. V. Prigara, Zh. Éksp. Teor. Fiz. 84, 1440 (1983) [Sov. Phys. JETP 57, 838 (1983)]; V. I. Perel’ and D. G. Polyakov, Zh. Éksp. Teor. Fiz. 86, 352 (1984) [Sov. Phys. JETP 59, 204 (1984)]; I. M. Lifshitz, S. A. Gredeskul, and L. A. Pastur, Introduction to the Theory of Disordered Systems (New York, Wiley, 1988).

    Google Scholar 

  15. I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov, Phys. Rev. Lett. 95, 046404 (2005).

    Google Scholar 

  16. D. A. Bagrets, I. V. Gornyi, and D. G. Polyakov (unpublished).

  17. A. G. Yashenkin, I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov (unpublished).

  18. A. I. Larkin, Zh. Éksp. Teor. Fiz. 58, 1466 (1970) [Sov. Phys. JETP 31, 784 (1970)].

    Google Scholar 

  19. A. D. Mirlin, D. G. Polyakov, and V. M. Vinokur, Phys. Rev. Lett. 99, 156405 (2007).

    Google Scholar 

  20. D. G. Polyakov and I. V. Gornyi, Phys. Rev. B 68, 035421 (2003).

    Google Scholar 

  21. T. Giamarchi and H. J. Schulz, Phys. Rev. B 37, 325 (1988).

    Article  ADS  Google Scholar 

  22. J. T. Chalker, Y. Gefen, and M. Y. Veillette, Phys. Rev. B 76, 085320 (2007).

    Google Scholar 

  23. B. L. Altshuler, A. G. Aronov, and D. E. Khmelnitskii, J. Phys. C 15, 7367 (1982).

    Article  ADS  Google Scholar 

  24. B. N. Narozhny, G. Zala, and I. L. Aleiner, Phys. Rev. B 65, 180202(R) (2002).

  25. H. C. Fogedby, J. Phys. C 9, 3757 (1976); D. K. K. Lee and Y. Chen, J. Phys. A 21, 4155 (1988); P. Kopietz, Bosonization of Interacting Electrons in Arbitrary Dimensions (Springer, Berlin, 1997); V. Fernández, K. Li, and C. Naón, Phys. Lett. B 452, 98 (1999); V. I. Fernández and C. M. Naón, Phys. Rev. B 64, 033402 (2001); I. V. Yurkevich, in Strongly Correlated Fermions and Bosons in Low-Dimensional Disordered Systems, Ed. by I. V. Lerner, B. L. Altshuler, and V. I. Fal’ko (Kluwer, Dordrecht, 2002), condmat/0112270; A. Grishin, I. V. Yurkevich, and I. V. Lerner, Phys. Rev. B 69, 165108 (2004).

    Article  ADS  Google Scholar 

  26. I. V. Lerner and I. V. Yurkevich, in Nanophysics Coherence and Transport, Ed. H. Bouchiat, Y. Gefen, S. GuÉron, G. Montambaux, and J. Dalibard (Elsevier, Amsterdam, 2005); cond-mat/0508223.

    Google Scholar 

  27. I. E. Dzyaloshinskii and A. I. Larkin, Zh. Éksp. Teor. Fiz. 65, 411 (1973) [Sov. Phys. JETP 38, 202 (1974)].

    Google Scholar 

  28. L. Fleishman and P. W. Anderson, Phys. Rev. B 21, 2366 (1980); I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov, Phys. Rev. Lett. 95, 206603 (2005); D. M. Basko, I. L. Aleiner, and B. L. Altshuler, Ann. Phys. (N.Y.) 321, 1126 (2006).

    Article  ADS  Google Scholar 

  29. A. M. Lunde, K. Flensberg, and L. I. Glazman, Phys. Rev. B 75, 245418 (2007).

    Google Scholar 

  30. R. Egger and H. Grabert, Phys. Rev. Lett. 77, 538 (1996); F. Dolcini, B. Trauzettel, I. Safi, and H. Grabert, Phys. Rev. B 71, 165309 (2005).

    Article  ADS  Google Scholar 

  31. P. Fendley, A. W. W. Ludwig, and H. Saleur, Phys. Rev. B 52, 8934 (1995); U. Weiss. Solid State Commun. 100, 281 (1996); R. Egger and H. Grabert, Phys. Rev. B 58, 10761 (1998).

    Article  ADS  Google Scholar 

  32. G. Catelani and I. L. Aleiner, JETP 100, 331 (2005).

    Article  ADS  Google Scholar 

  33. D. B. Gutman, Y. Gefen, and A. D. Mirlin, Phys. Rev. Lett. 100, 086801 (2008).

    Google Scholar 

  34. D. B. Gutman, Y. Gefen, and A. D. Mirlin, arXiv: 0804.4294.

  35. B. A. Muzykantskii and D. E. Khmelnitskii, JETP Lett. 62, 76 (1995).

    ADS  Google Scholar 

  36. A. Kamenev and A. Andreev, Phys. Rev. B 60, 2218 (1999).

    Article  ADS  Google Scholar 

  37. A. L. Shelankov, J. Low Temp. Phys. 60, 29 (1985).

    Article  ADS  Google Scholar 

  38. G. Eilenberger, Z. Phys. 214, 195 (1968).

    Article  ADS  Google Scholar 

  39. J. Rammer and H. Smith, Rev. Mod. Phys. 58, 323 (1986).

    Article  ADS  Google Scholar 

  40. A. Kamenev, in Nanophysics: Coherence and Transport, Ed. by H. Bouchiat, Y. Gefen, S. Guéron, G. Montambaux, and J. Dalibard (Elsevier, Amsterdam, 2005); cond-mat/0412296.

    Google Scholar 

  41. U. Eckern and P. Schwab, Phys. Status Solidi B 244, 2343 (2007).

    Article  Google Scholar 

  42. L. S. Levitov, A. V. Shytov, and B. I. Halperin, Phys. Rev. B 64, 075322 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Polyakov.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagrets, D.A., Gornyi, I.V., Mirlin, A.D. et al. Relaxation processes in a disordered Luttinger liquid. Semiconductors 42, 994–1007 (2008). https://doi.org/10.1134/S1063782608080204

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782608080204

PACS numbers

Navigation