Skip to main content
Log in

Relaxation of excitons in semimagnetic asymmetric double quantum wells

  • Low-Dimensional Systems
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The steady-state circular-polarized photoluminescence in semimagnetic asymmetric double quantum wells based on Cd(Mn,Mg)Te is studied thoroughly in relation to the polarization of intrawell nonresonance photoexcitation in magnetic fields Bup to 9 T. In low fields B, in which the exciton in the magnetic well is higher in energy than the exciton in the nonmagnetic well, the complete interwell relaxation of excitons is observed. In fields higher than B c = 3–6 T, at which the exciton level in the magnetic well crosses the field-independent exciton level in the nonmagnetic well, the magnetic-field-induced red shift of the exciton in the magnetic well is accompanied by the establishment of a nonequilibrium distribution of excitons. This suggests that spin relaxation plays an important part in the interwell separation of excitons in the spin-dependent potential of the heterostructure. The efficiency of spin relaxation is controlled by mixing of valence band states in the nonmagnetic well and by splitting of heavy and light holes Δ hh-lh . Different modes of interwell tunneling are observed in different field regions separated by the field B * c > B c corresponding to the crossing of the localized excitons in the nonmagnetic well and free excitons in the magnetic well. Possible mechanisms of interwell tunnel relaxation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Butov, A. C. Gossard, D.S. Chemla, Nature 418, 751 (2002).

    Article  ADS  Google Scholar 

  2. L. Esaki, IEEE J. Quantum Electron. 22, 1611 (1986).

    Article  ADS  Google Scholar 

  3. S. Ten, F. Henneberger, M. Rabe, and N. Peyghambarian, Phys. Rev. B 53, 12637 (1996).

    Article  ADS  Google Scholar 

  4. R. Ferreira, C. Delalande, H. W. Liu, et al., Phys. Rev. B 42, 9170 (1990).

    Article  ADS  Google Scholar 

  5. M. Bayer, V. B. Timofeev, F. Faller, et al., Phys. Rev. B 54, 8799 (1996).

    Article  ADS  Google Scholar 

  6. A. A. Dremin, V. B. Timofeev, A. V. Larinov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 75, 689 (2002) [Tech. Phys. Lett. 75, 146 (2002)]; A. V. Gorbunov and V. B. Timofeev. Pis’ma Zh. Éksp. Teor. Fiz. 83, 178 (2006).

    Google Scholar 

  7. L.V. Butov, C. W. Lai, A. L. Ivanov, et al., Nature 417, 47 (2002).

    Article  ADS  Google Scholar 

  8. W. Heimbrodt, L. Gridneva, M. Happ, et al., Phys. Rev. B 58, 1162 (1998).

    Article  ADS  Google Scholar 

  9. W. Heimbrodt, M. Happ, and F. Henneberger, Phys. Rev. B 60, R16326 (1999).

    Article  ADS  Google Scholar 

  10. H. Falk, J. Hubner, P. J. Klar, and W. Heimbrodt, Phys. Rev. B 68, 165203 (2003).

    Article  ADS  Google Scholar 

  11. J. Seufert, M. Obert, G. Bacher, et al., Phys. Rev. B 64, 121303 (2001).

    Article  ADS  Google Scholar 

  12. J Shah, Ultrafast Spestroscopy of Semiconductors and Semiconductor Nanostructures (Springer Series in Solid State Scienses, 1999) v. 115, Ch. 7.

  13. E. L. Ivshenko and P. E. Pikus, Superlattics and Other Heterostructures. Symmetry and Optical Phenomena (Springer, Berlin, 1997).

    Google Scholar 

  14. R. Ferreira and G. Bastard, Phys. Rev. B 40, 1074 (1989).

    Article  ADS  Google Scholar 

  15. I. Lawrense, S. Haaske, H. Mariette, et al., Phys. Rev. Lett. 73, 2131 (1994).

    Article  ADS  Google Scholar 

  16. G. Bastard, J. A. Brum, and R. Ferreira, Electronis State in Semiconductor Heterostructures, Solid State Physics (Asademis, London, 1991), Vol. 44, Ch. 12.

    Google Scholar 

  17. R. Wassel and M. Altarelli, Phys. Rev. B 39, 12802 (1989).

    Article  ADS  Google Scholar 

  18. T. B. Norris, N. Vodjdani, B. Vinter, et al., Phys. Rev. B 43, 1867 (1991).

    Article  ADS  Google Scholar 

  19. A. Tomita, J. Shah, and R. S. Knox. Phys. Rev. B 53, 10793 (1996).

    Article  ADS  Google Scholar 

  20. S. K. Lyo, Phys. Rev. B 62, 13641 (2000).

    Article  ADS  Google Scholar 

  21. W. M. Chen, I. A. Buyanova, K. Kayanuma, et al., Phys. Rev. B 72, 073206 (2005).

    Article  ADS  Google Scholar 

  22. S. V. Zaoetsev, A.S. Brichkin, P. CC. Dorozhkin, and G. Bakher, Pis’ma Zh. Éksp. Teor. Fiz. 84, 403 (2006) [JETP Lett. 84, 340(2006)].

    Google Scholar 

  23. D. Tönnies, G. Bacher, A. Forchel, et al., Appl. Phys. Lett. 64, 5608 (2001).

    Google Scholar 

  24. S. Zaitsev, M. K. Welsch, H. Schömig, et al., Semicond. Sci. Technol. 16, 631 (2001).

    ADS  Google Scholar 

  25. U. Jahn, M. Ramsteiner, R. Hey, et al., Phys. Rev. B 56, R4387 (1997).

    Article  ADS  Google Scholar 

  26. D. R. Yakovlev and K. V. Kavokin, Comm. Cond. Mat. Phys. 18, 51 (1996).

    Google Scholar 

  27. J. K. Furdyna, J. Appl. Phys. 64, R29 (1988).

    Article  ADS  Google Scholar 

  28. S. A. Crooker, D. D. Awschalom, J. J. Baumberg, et al., Phys. Rev. B 56, 7574 (1997).

    Article  ADS  Google Scholar 

  29. C. Camilleri, F. Teppe, D. Scalbert, et al., Phys. Rev. B 64, 085331 (2001).

    Article  ADS  Google Scholar 

  30. A. A. Sirinko, T. Ruf, M. Cardona, et al., Phys. Rev. B 56, 2114 (1997).

    Article  ADS  Google Scholar 

  31. B. Kuhn-Heinrish, W. Ossau, T. Litz, et al., J. Appl. Phys. 75, 8046 (1994).

    Article  ADS  Google Scholar 

  32. M. K. Welsch, H. Schömig, M. Legge, et al., Appl. Phys. Lett. 78, 2937 (2001).

    Article  ADS  Google Scholar 

  33. S. V. Zaitsev, A. S. Brichkin, P. S. Dorozhkin, and Yu. A. Tarakanov, CondMat/0608609.

  34. H. J. Krenner, M. Sabathil, E. C. Clark, et al., Phys. Lett. 94, 057402 (2005).

  35. R. P. Leavitt and J. W. Little, Phys. Rev. B 42, 11774 (1990).

    Article  ADS  Google Scholar 

  36. Ph. Roussignol, P. Rolland, R. Ferreira, et al., Phys. Rev. B 46, 7292 (1992).

    Article  ADS  Google Scholar 

  37. S. Pfalz, R. Winkler, T. Nowitzki, et al., Phys. Rev. B 71, 165305 (2005).

    Article  ADS  Google Scholar 

  38. Optical Orientation, Ed. by F. Meier and B. P. Zakharchenya (North-Holland, Amsterdam, 1984; Nauka, Leningrad, 1989).

    Google Scholar 

  39. M. M. Glazov, Phys. Rev. B 70, 195314 (2004).

    Article  ADS  Google Scholar 

  40. R. Ferreira and G. Bastard, Phys. Rev. B 43, 9687 (1991).

    Article  ADS  Google Scholar 

  41. T. Amand, B. Dareys, B. Baylac, et al., Phys. Rev. B 50, 11624 (1994).

    Article  ADS  Google Scholar 

  42. D. A. Tulshinsky, J. J. Baumbert, D. D. Awsshalom, et al., Phys. Rev. B 50, 10851 (1994).

    Article  ADS  Google Scholar 

  43. W. M. Chen, I. A. Buyanova, K. Kayanuma, et al., Appl. Phys. Lett. 85, 5260 (2004).

    Article  ADS  Google Scholar 

  44. B. P. Zakharshenya, P. C. Kop’ev, D. N. Mirlin, et al., Solid State Commun. 69, 203 (1989).

    Article  ADS  Google Scholar 

  45. T. C. Damen, Jagdeep Shah, D. Y. Oberli, et al., Phys. Rev. B 42, 7434 (1990).

    Article  ADS  Google Scholar 

  46. M. Umlauff, J. Hoffmann, H. Kalt, et al., Phys. Rev. B 57, 1390 (1998).

    Article  ADS  Google Scholar 

  47. M.Z. Maialle, E.A. de Andrada e Silva, and L. J. Sham, Phys. Rev. B 47, 15776 (1993).

    Article  ADS  Google Scholar 

  48. R. Ferreira and G. Bastard, Phys. Rev. B 43, 9687 (1991).

    Article  ADS  Google Scholar 

  49. R. Spiegel, G. Basher, A. Forshel, et al., Phys. Rev. B 55, 9866 (1997).

    Article  ADS  Google Scholar 

  50. G. Bacher, R. Spiegel, T. Kümmell, et al., Phys. Rev. B 56, 6868 (1997).

    Article  ADS  Google Scholar 

  51. C. D. Poweleit, A. R. Hodges, T.-B. Sun, et al., Phys. Rev. B 59, 7610 (1999).

    Article  ADS  Google Scholar 

  52. S. Maskowski, T. A. Nguyen, H. E. Jackson, et al., Appl. Phys. Lett. 83, 5524 (2003).

    Article  ADS  Google Scholar 

  53. S. Haacke, N. T. Pelekanos, H. Mariette, et al., Phys. Rev. B 47, 16643 (1993).

    Article  ADS  Google Scholar 

  54. J. Triboller, F. Bernardot, M. Menant, et al., Phys. Rev. B 68, 235316 (2003).

    Article  ADS  Google Scholar 

  55. F. T. Vas’ko and O. É. Raoechev, Zh. Éksp. Teor. Fiz. 104, 3103 (1993) [JETP 77, 452 (1993)].

    Google Scholar 

  56. E. L. Wolf, Principles of Electron Tunneling Spectroscopy (Oxford Univ. Press, New York, 1985; Naukova Dumka, Kiev, 1990).

    Google Scholar 

  57. P. Ray and P. K. Basu. Phys. Rev. B 46, 13268 (1992).

    Article  ADS  Google Scholar 

  58. P. K. Basu, Phys. Rev. B 44, 8798 (1991).

    Article  ADS  Google Scholar 

  59. T. Tada, A. Yamagushi, T. Ninomiya, et al., J. Appl. Phys. 63, 5491 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Zaitsev.

Additional information

Original Russian Text © S.V. Zaitsev, A.S. Brichkin, P.S. Dorozhkin, G. Bacher, 2008, published in Fizika i Tekhnika Poluprovodnikov, 2008, Vol. 42, No. 7, pp. 831–845.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaitsev, S.V., Brichkin, A.S., Dorozhkin, P.S. et al. Relaxation of excitons in semimagnetic asymmetric double quantum wells. Semiconductors 42, 813–827 (2008). https://doi.org/10.1134/S1063782608070117

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782608070117

PACS numbers

Navigation