Skip to main content
Log in

Effect of high-power nanosecond and femtosecond laser pulses on silicon nanostructures

  • Low-Dimensional Systems
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The effect of high-power nanosecond (20 ns) and femtosecond (120 fs) laser pulses on silicon nanostructures produced by ion-beam-assisted synthesis in SiO2 layers or by deposition onto glassy substrates is studied. Nanosecond annealing brings about a photoluminescence band at about 500 mn, with the intensity increasing with the energy and number of laser pulses. The source of the emission is thought to be the clusters of Si atoms segregated from the oxide. In addition, the nanosecond pulses allow crystallization of amorphous silicon nanoprecipitates in SiO2. Heavy doping promotes crystallization. The duration of femtosecond pulses is too short for excess Si to be segregated from SiO2. At the same time, such short pulses induce crystallization of Thin a-Si films on glassy substrates. The energy region in which crystallization is observed for both types of pulses allows short-term melting of the surface layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. I. Shtyrkov, I. B. Khaĭbullin, M. F. Galyautdinov, and M. M. Zaripov, Opt. Spektrosk. 38, 1031 (1975) [Opt. Spectrosc. 38, 595 (1975)].

    ADS  Google Scholar 

  2. G. A. Kachurin, N. B. Pridachin, and L. S. Smirnov, Fiz. Tekh. Poluprovodn. (Leningrad) 9, 1428 (1975) [Sov. Phys. Semicond. 9, 946 (1975)].

    Google Scholar 

  3. J. A. Van Vechten, R. Tsu, and W. F. Saris, Phys. Lett. A 74A, 422 (1979).

    Article  ADS  Google Scholar 

  4. J. Grun, R. P. Fischer, M. Peckerar, et al., Appl. Phys. Lett. 77, 13 (2000).

    Article  Google Scholar 

  5. T. Takamori, R. Messier, and R. Roy, Appl. Phys. Lett. 20, 201 (1972).

    Article  ADS  Google Scholar 

  6. Yu. L. Khait, R. Beserman, A. Chack, and W. Beyer, J. Appl. Phys. 97, 123508 (2005).

    Article  ADS  Google Scholar 

  7. S. Juodkazis, K. Nishimura, S. Tanaka, et al., Phys. Rev. Lett. 96, 166101 (2006).

    Article  ADS  Google Scholar 

  8. C. V. Shank, P. Yen, and C. Hirlimann, Phys. Rev. Lett. 50, 454 (2006).

    Article  ADS  Google Scholar 

  9. K. Sokolovski-Tinten, J. Bialkowski, and D. von der Linde, Phys. Rev. B 51, 14186 (1995).

    Article  ADS  Google Scholar 

  10. H. W. K. Tom, G. D. Aumiller, and C. H. Brito-Cruz, Phys. Rev. Lett. 60, 1438 (1998).

    Article  ADS  Google Scholar 

  11. P. L. Silvestrelli, A. Alavi, M. Parrinello, and D. Frenkel, Phys. Rev. Lett. 77, 3149 (1996).

    Article  ADS  Google Scholar 

  12. M. D. Efremov, V. V. Bolotov, V. A. Volodin, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 36, 109 (2002) [Semiconductors 36, 102 (2002)].

    Google Scholar 

  13. T. Y. Choi and D. J. Hwang, Opt. Eng. 42, 3383 (2003).

    Article  ADS  Google Scholar 

  14. J.-M. Shieh, Z.-H. Chen, B.-T. Dai, et al., Appl. Phys. Lett. 85, 1232 (2004).

    Article  ADS  Google Scholar 

  15. A. Janotta, Y. Dikce, M. Schmidt, et al., J. Appl. Phys. 95, 4060 (2004).

    Article  ADS  Google Scholar 

  16. G. L. Lee, S. H. Song, Y. P. Lee, et al., Appl. Phys. Lett. 89, 151907 (2006).

    Article  ADS  Google Scholar 

  17. G. A. Kachurin, S. G. Yanovskaya, V. A. Volodin, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 36, 685 (2002) [Semiconductors 36, 647 (2002)].

    Google Scholar 

  18. A. Zimina, S. Eisebitt, W. Eberhardt, et al., Appl. Phys. Lett. 88, 163103 (2006).

    Google Scholar 

  19. P. Mutti, G. Ghislotti, S. Bertoni, et al., Appl. Phys. Lett. 66, 851 (1995).

    Article  ADS  Google Scholar 

  20. G. Ghislotti, B. Nielsen, P. Asoka-Kumar, et al., J. Appl. Phys. 79, 8660 (1996).

    Article  ADS  Google Scholar 

  21. S. P. Withrow, C. W. White, A. Meldrum, et al., J. Appl. Phys. 86, 396 (1999).

    Article  ADS  Google Scholar 

  22. Zh. Ma, P. Han, Y. Sui, et al., Thin Solid Films 515, 2322 (2006).

    Article  ADS  Google Scholar 

  23. L. Csepregi, E. F. Kennedy, T. J. Gallaher, et al., J. Appl. Phys. 48, 4234 (1977).

    Article  ADS  Google Scholar 

  24. J. R. A. Carlsson, S. F. Gong, X.-H. Li, and H. T. G. Hentzell, J. Appl. Phys. 70, 4857 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Kachurin.

Additional information

Original Russian Text © G.A. Kachurin, S.G. Cherkova, V.A. Volodin, D.V. Marin, M. Deutschmann, 2008, published in Fizika i Tekhnika Poluprovodnikov, 2008, Vol. 42, No. 2, pp. 181–186.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kachurin, G.A., Cherkova, S.G., Volodin, V.A. et al. Effect of high-power nanosecond and femtosecond laser pulses on silicon nanostructures. Semiconductors 42, 183–187 (2008). https://doi.org/10.1134/S1063782608020103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782608020103

PACS numbers

Navigation