Skip to main content
Log in

Potentialities and basic principles of controlling the plastic relaxation of GeSi/Si and Ge/Si films with stepwise variation in the composition

  • Review
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

GeSi/Si heterostructures consisting of a plastically relaxed layer that includes various fractions of Ge and which is grown on Si (001) span the values of the lattice parameter from equal to that in silicon to equal to that in germanium. The corresponding substrates are conventionally referred to as artificial. A number of methods exist for growing high-quality GeSi layers with as large as 100% of Ge on Si (001) substrates through an intermediate GeSi layer with a varying composition. However, it is desirable in a number of cases to have ultrathin (<1 μm) GeSi and Ge layers directly on the Si (001) substrate for practical applications. The results of new methods such as the use of a buffer Si layer grown at a comparatively low temperature (300–400°C) in plastic relaxation of the GeSi/Si(001) heterostructures and also the use of surfactants (antimony and hydrogen) are analyzed. The examples of artificial introduction of centers for origination of misfit dislocations as an alternative to their introduction from the rough surface are considered. It can be concluded that, in order to expand the range of potentialities of growing perfect plastically relaxed GeSi (001) films, it is necessary to (i) make it possible to form in a controlled manner the centers for origination of the misfit dislocations and (ii) retard or completely suppress the transition of the growth mechanism from two-to three-dimensional in order to prevent the formation of additional misfit dislocations from the surface of the stressed film and, correspondingly, additional threading dislocations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Friedman, M. Meghelli, B. D. Parker, et al., IBM J. Res. Dev. 47, 259 (2003).

    Article  Google Scholar 

  2. B. Gaucher, B. Floyd, and S. Reynolds, Semicond. Sci. Technol. 22, S236 (2007).

    Article  ADS  Google Scholar 

  3. http://www.cnews.ru/news/line/index.shtml.2006/06/20/203976.

  4. E. A. Fitzgerald, Y. H. Xie, M. L. Green, et al., Appl. Phys. Lett. 59, 811 (1991).

    Article  ADS  Google Scholar 

  5. M. Currie, S. B. Samavedam, T. Langdo, et al., Appl. Phys. Lett. 72, 1718 (1998).

    Article  ADS  Google Scholar 

  6. S. B. Samavedam, M. Currie, T. Langdo, and E. A. Fitzgerald, Appl. Phys. Lett. 73, 2125 (1998).

    Article  ADS  Google Scholar 

  7. K. Chilukuri, M. J. Mori, C. L. Dohrman, and E. A. Fitzgerald, Semicond. Sci. Technol. 22, 29 (2007).

    Article  ADS  Google Scholar 

  8. C. Rosenblad, H. R. Deller, A. Dommann, et al., J. Vacuum Sci. Technol. A 16, 2785 (1998).

    Article  ADS  Google Scholar 

  9. R. Ginige, B. Corbett, M. Modreanu, et al., Semicond. Sci. Technol. 21, 775 (2006).

    Article  ADS  Google Scholar 

  10. G. Isella, J. Osmond, M. Kummer, et al., Semicond. Sci. Technol. 22, S26 (2007).

    Article  ADS  Google Scholar 

  11. Yu. B. Bolkhovityanov, O. P. Pchelyakov, L. V. Sokolov, and S. I. Chikichev, Fiz. Tekh. Poluprovodn. (St. Petersburg) 37, 513 (2003) [Semiconductors 37, 493 (2003)].

    Google Scholar 

  12. Yu. B. Bolkhovityanov, O. P. Pchelyakov, and S. I. Chikichev, Usp. Fiz. Nauk 171, 689 (2001) [Phys. Usp. 44, 655 (2001)].

    Article  Google Scholar 

  13. J. W. Matthews and A. E. Blakeslee, J. Cryst. Growth 27, 118 (1974).

    ADS  Google Scholar 

  14. J. W. Matthews, J. Vac. Sci. Technol. 12, 126 (1975).

    Article  ADS  Google Scholar 

  15. E. A. Fitzgerald, Mater. Sci. Rep. 7, 92 (1991).

    Article  Google Scholar 

  16. S. C. Jain, M. Willander, and H. Maes, Semicond. Sci. Technol. 11, 641 (1996).

    Article  ADS  Google Scholar 

  17. D. J. Eaglesham, E. P. Kvam, D. M. Maher, et al., Philos. Mag. A 59, 1059 (1989).

    Article  ADS  Google Scholar 

  18. E. P. Kvam, D. M. Maher, and C. J. Humpreys, J. Mater. Res. 5, 1900 (1990).

    Article  ADS  Google Scholar 

  19. D. D. Perovic, G. C. Weatherly, J.-M. Baribeau, and D. C. Houghton, Thin Solid Films 183, 141 (1989).

    Article  ADS  Google Scholar 

  20. D. D. Perovic and D. C. Houghton, Inst. Phys. Conf. Ser., No. 146, 117 (1995).

  21. R. Hull and J. C. Bean, J. Vac. Sci. Technol. A 7, 2580 (1989).

    Article  ADS  Google Scholar 

  22. W. Hagen and H. Strunk, Appl. Phys. 47, 85 (1978).

    Article  ADS  Google Scholar 

  23. F. K. LeGoues, B. S. Meerson, and J. F. Morar, Phys. Rev. Lett. 66, 2903 (1991).

    Article  ADS  Google Scholar 

  24. M. A. Capano, Phys. Rev. B 45, 11768 (1992).

    Google Scholar 

  25. Y. Chen and J. Washburn, Phys. Rev. Lett. 77, 4046 (1996).

    Article  ADS  Google Scholar 

  26. Yu. B. Bolkhovityanov, O. P. Pchelyakov, L. V. Sokolov, et al., Izv. Ross. Akad. Nauk, Ser. Fiz. 65, 180 (2001).

    Google Scholar 

  27. R. J. Asaro and W. A. Tiller, Metall. Trans. 3, 1789 (1972).

    Article  Google Scholar 

  28. M. A. Grinfel’d, Dokl. Akad. Nauk SSSR 290, 1358 (1986) [Sov. Phys. Dokl. 31, 1006 (1986)].

    ADS  Google Scholar 

  29. W. Seifert, N. Carlsson, M. Miller, et al., Progr. Cryst. Growth Charact. 33, 423 (1996).

    Article  Google Scholar 

  30. O. P. Pchelyakov, Yu. B. Bolkhovityanov, A. V. Dvurechenskiĭ, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 34, 1281 (2000) [Semiconductors 34, 1229 (2000)].

    Google Scholar 

  31. D. E. Jesson, S. J. Pennycook, J.-M. Baribeau, and D. C. Houghton, Phys. Rev. Lett. 71, 1744 (1993).

    Article  ADS  Google Scholar 

  32. J. Tersoff and F. K. LeGoues, Phys. Rev. Lett. 72, 3570 (1994).

    Article  ADS  Google Scholar 

  33. R. Hull, J. C. Bean, and C. Buescher, J. Appl. Phys. 66, 5837 (1989).

    Article  ADS  Google Scholar 

  34. P. M. Mooney, F. K. LeGoues, J. Tersoff, and J. O. Chu, J. Appl. Phys. 75, 3968 (1994).

    Article  ADS  Google Scholar 

  35. V. I. Vdovin, M. G. Mil’vidskii, T. G. Yugova, et al., J. Cryst. Growth 141, 109 (1994).

    Article  ADS  Google Scholar 

  36. S. W. Lee, P. S. Chen, T. Y. Chien, et al., Thin Solid Films 508, 120 (2006).

    Article  ADS  Google Scholar 

  37. H. Chen, L. W. Guo, Q. Cui, et al., J. Appl. Phys. 79, 1167 (1996).

    Article  ADS  Google Scholar 

  38. K. K. Linder, F. C. Zhang, J.-S. Rieh, et al., Appl. Phys. Lett. 70, 3224 (1997).

    Article  ADS  Google Scholar 

  39. J. H. Li, C. S. Peng, Y. Wu, et al., Appl. Phys. Lett. 71, 3132 (1997).

    Article  ADS  Google Scholar 

  40. C. S. Peng, Z. Y. Zhao, H. Chen, et al., Appl. Phys. Lett. 72, 3160 (1998).

    Article  ADS  Google Scholar 

  41. J. H. Li, C. S. Peng, Z. H. Mai, et al., J. Appl. Phys. 80, 1292 (1999).

    Article  ADS  Google Scholar 

  42. P. I. Gaiduk, A. N. Larsen, and J. L. Hansen, Thin Solid Films 367, 120 (2000).

    Article  ADS  Google Scholar 

  43. Y. H. Luo, J. Wan, R. L. Forrest, et al., J. Appl. Phys. 89, 8279 (2001).

    Article  ADS  Google Scholar 

  44. Yu. B. Bolkhovityanov, A. K. Gutakovskii, V. I. Mashanov, et al., J. Appl. Phys. 91, 4710 (2002).

    Article  ADS  Google Scholar 

  45. F. K. LeGoues, B. S. Meyerson, J. F. Morar, and P. D. Kirchner, J. Appl. Phys. 71, 4230 (1992).

    Article  ADS  Google Scholar 

  46. R. J. Beanland, Appl. Phys. 72, 4031 (1992).

    Article  Google Scholar 

  47. Yu. B. Bolkhovityanov, A. S. Deryabin, A. K. Gutakovskii, et al., Thin Solid Films 466, 69 (2004).

    Article  ADS  Google Scholar 

  48. Yu. B. Bolkhovityanov, A. S. Deryabin, A. K. Gutakovskii, et al., J. Appl. Phys. 96, 7665 (2004).

    Article  ADS  Google Scholar 

  49. Yu. B. Bolkhovityanov, A. S. Deryabin, A. K. Gutakovskii, et al., J. Cryst. Growth 280, 309 (2005).

    Article  ADS  Google Scholar 

  50. M. Bauer, K. Lyutovich, M. Oehme, et al., Thin Solid Films 369, 152 (2000).

    Article  ADS  Google Scholar 

  51. W.-X. Ni, K. Lyutovich, J. Alami, et al., J. Cryst. Growth 227-228, 756 (2001).

    Article  ADS  Google Scholar 

  52. A. G. Cullis, A. J. Pidduck, and M. T. Emeny, J. Cryst. Growth 158, 15 (1996).

    Article  ADS  Google Scholar 

  53. C. S. Ozkan, W. D. Nix, and H. Gao, Appl. Phys. Lett. 70, 2247 (1997).

    Article  ADS  Google Scholar 

  54. Yu. B. Bolkhovityanov, A. S. Deryabin, A. K. Gutakovskii, et al., Appl. Phys. Lett. 85, 6140 (2004).

    Article  ADS  Google Scholar 

  55. J. Godet, L. Pizzagalli, S. Brochard, and P. Beauchamp, Phys. Rev. B 70, 054109 (2004).

    Google Scholar 

  56. M. Copel, M. C. Reuter, M. Horn von Hoegen, and R. M. Tromb, Phys. Rev. B 42, 11682 (1990).

  57. G. G. Jernigan, C. L. Silvestre, M. Fatemi, et al., J. Cryst. Growth 213, 299 (2000).

    Article  ADS  Google Scholar 

  58. A. D. Lambert, B. M. McGregor, R. J. H. Morris, et al., Semicond. Sci. Technol. 14, L1 (1999).

    Article  ADS  Google Scholar 

  59. Yu. B. Bolkhovityanov, A. S. Deryabin, A. K. Gutakovskii, et al., J. Cryst. Growth 293, 247 (2006).

    Article  ADS  Google Scholar 

  60. P. Bratu, K. L. Kompa, and U. Hoefler, Chem. Phys. Lett. 251, 1 (1996).

    Article  ADS  Google Scholar 

  61. J. E. Vasek, Z. Zhang, C. T. Salling, and M. G. Lagally, Phys. Rev. B 51, 17207 (1995).

    Google Scholar 

  62. R. R. LaPierre, B. J. Robinson, and D. A. Thompson, J. Cryst. Growth 191, 319 (1998).

    Article  ADS  Google Scholar 

  63. Y. J. Chun, Y. Okada, and M. Kawabe, J. Cryst. Growth 150, 497 (1995).

    Article  ADS  Google Scholar 

  64. Yu. B. Bolkhovityanov, A. S. Deryabin, A. K. Gutakovskii, and L. V. Sokolov, J. Cryst. Growth 297, 57 (2006).

    Article  ADS  Google Scholar 

  65. Yu. B. Bolkhovityanov, A. S. Deryabin, A. K. Gutakovskiĭ, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 41, 1251 (2007) [Semiconductors 41, 1234 (2007)].

    Google Scholar 

  66. V. I. Vdovin, Phys. Status Solidi A 171, 239 (1999).

    Article  ADS  Google Scholar 

  67. S. Y. Yang and J. R. Abelson, J. Vac. Sci. Technol. A 11, 1327 (1993).

    Article  ADS  Google Scholar 

  68. Yu. B. Bolkhovityanov, A. K. Gutakovskii, V. I. Mashanov, et al., Thin Solid Films 392, 98 (2001).

    Article  ADS  Google Scholar 

  69. S. Mantl, B. Holländer, R. Liedtke, et al., Nucl. Instrum. Methods Phys. Res. B 147, 29 (1999).

    Article  ADS  Google Scholar 

  70. H. Trinkaus, B. Holländer, St. Rongen, et al., Appl. Phys. Lett. 76, 3552 (2000).

    Article  ADS  Google Scholar 

  71. K. Sawano, Y. Hirose, S. Koh, et al., J. Cryst. Growth 251, 685 (2003).

    Article  ADS  Google Scholar 

  72. J. Cai, P. M. Mooney, S. H. Christiansen, et al., J. Appl. Phys. 95, 5347 (2004).

    Article  ADS  Google Scholar 

  73. R. J. Beanland, Appl. Phys. 77, 6217 (1995).

    Article  Google Scholar 

  74. J. P. Hirth and J. Lothe, Theory of Dislocations, 2nd ed. (Wiley, New York, 1982; Atomizdat, Moscow, 1972).

    Google Scholar 

  75. R. J. Beanland, Appl. Phys. 72, 4031 (1992).

    Article  Google Scholar 

  76. P. B. Mooney, F. K. LeGoues, J. Tersoff, and J. O. Chu, J. Appl. Phys. 75, 3968 (1994).

    Article  ADS  Google Scholar 

  77. F. K. LeGoues, Phys. Rev. Lett. 72, 876 (1994).

    Article  ADS  Google Scholar 

  78. M. M. Rahman, S. Q. Zheng, M. Mori, et al., J. Appl. Phys. 100, 053505 (2006).

  79. A. P. Knights, R. M. Gwilliam, B. J. Sealy, et al., J. Appl. Phys. 89, 76 (2001).

    Article  ADS  Google Scholar 

  80. T. Ueno, T. Irisawa, and Y. Shiraki, J. Cryst. Growth 227, 761 (2001).

    Article  ADS  Google Scholar 

  81. Y. H. Luo, J. Wan, R. L. Forrest, et al., Appl. Phys. Lett. 78, 454 (2001).

    Article  ADS  Google Scholar 

  82. J. S. Speck, M. A. Brewer, G. Beltz, et al., J. Appl. Phys. 80, 3808 (1996).

    Article  ADS  Google Scholar 

  83. R. Hull, J. C. Bean, R. E. Leibenguth, and D. J. Werder, J. Appl. Phys. 65, 4723 (1989).

    Article  ADS  Google Scholar 

  84. E. Kasper, K. Lyutovich, V. Bauer, and M. Oemie, Thin Solid Films 336, 319 (1998).

    Article  ADS  Google Scholar 

  85. H. Alexander and P. Haasen, Solid State Phys. 22, 27 (1968).

    Article  Google Scholar 

  86. C. G. Tuppen and C. J. Gibbings, J. Appl. Phys. 68, 1526 (1990).

    Article  ADS  Google Scholar 

  87. R. Hull, J. C. Bean, D. Bahnck, et al., J. Appl. Phys. 70, 2052 (1991).

    Article  ADS  Google Scholar 

  88. D. C. Houghton, D. D. Perovic, J.-M. Baribeau, and G. G. Weatherty, J. Appl. Phys. 67, 1850 (1990).

    Article  ADS  Google Scholar 

  89. V. Yu. Karasev, N. A. Kiselev, E. V. Orlova, et al., Inst. Phys. Conf. Ser., No. 100 (Sect. 1), 33 (1989).

  90. A. K. Gutakovskiĭ, Yu. O. Kanter, V. Yu. Karasev, et al., Dokl. Akad. Nauk SSSR 304, 355 (1989) [Sov. Phys. Dokl. 34, 3 (1989)].

    ADS  Google Scholar 

  91. V. I. Vdovin, J. Cryst. Growth 172, 58 (1997).

    Article  ADS  Google Scholar 

  92. T. J. Gosling, J. Appl. Phys. 74, 5415 (1993).

    Article  ADS  Google Scholar 

  93. Y. Bogumilowicz, J. M. Hartmann, C. Di Nardo, et al., J. Cryst. Growth 290, 523 (2006).

    Article  ADS  Google Scholar 

  94. H.-C. Luan, D. R. Lim, K. K. Lee, et al., Appl. Phys. Lett. 75, 2909 (1999).

    Article  ADS  Google Scholar 

  95. L. Colace, G. Masini, G. Assanto, et al., Appl. Phys. Lett. 76, 1231 (2000).

    Article  ADS  Google Scholar 

  96. Yu. B. Bolkhovityanov, Yu. D. Vaulin, A. K. Gutakovskiĭ, et al., Izv. Akad. Nauk SSSR, Ser. Fiz. 44, 1238 (1980).

    Google Scholar 

  97. Yu. B. Bolkhovityanov, Yu. D. Vaulin, A. K. Gutakovskii, and V. I. Yudaev, Cryst. Res. Technol. 16, 921 (1981).

    Google Scholar 

  98. Yu. B. Bolkhovityanov, V. I. Yudaev, and A. K. Gutakovskii, Thin Solid Films 137, 111 (1986).

    Article  ADS  Google Scholar 

  99. P. Sheldon, B. G. Yacobi, K. M. Jones, and D. J. Dunlavy, J. Appl. Phys. 58, 4186 (1985).

    Article  ADS  Google Scholar 

  100. M. Halbwax, D. Bouchier, V. Yam, et al., Appl. Phys. Lett. 97, 064907-1 (2005).

  101. J. Liu, H. J. Kim, O. Hul’ko, et al., J. Appl. Phys. 96, 916 (2004).

    Article  ADS  Google Scholar 

  102. A. Sakai and T. Tatsumi, Appl. Phys. Lett. 64, 52 (1994).

    Article  ADS  Google Scholar 

  103. D. Dentel, J. L. Bischoff, T. Angot, and L. Kubler, Surf. Sci. 402–404, 211 (1998).

    Article  Google Scholar 

  104. S.-J. Kahng, Y. H. Ha, J.-Y. Park, et al., Phys. Rev. Lett. 80, 4931 (1998).

    Article  ADS  Google Scholar 

  105. S.-J. Kahng, Y. H. Ha, D. W. Moon, and Y. Kuk, Phys. Rev. B 61, 10827 (2000).

    Google Scholar 

  106. A. Portavoce, I. Berbezier, and A. Ronda, Phys. Rev. B 69, 155414 (2004).

    Article  ADS  Google Scholar 

  107. M. Horn-von Hoegen, B. H. Müller, and A. Al-Falou, Phys. Rev. B 50, 11640 (1994).

    Article  ADS  Google Scholar 

  108. Th. Schmidt, R. Kröger, T. Clausen, et al., Appl. Phys. Lett. 86, 111910 (2005).

    Article  ADS  Google Scholar 

  109. F. K. LeGoues, M. Horn-von Hoegen, M. Copel, and R. M. Tromp, Phys. Rev. B 44, 12894 (1991).

    Article  ADS  Google Scholar 

  110. M. Horn-von Hoegen, A. Al-Falou, H. Pietsch, et al., Surf. Sci. 298, 29 (1993).

    Article  ADS  Google Scholar 

  111. M. Horn-von Hoegen, F. K. LeGoues, M. Copel, et al., Phys. Rev. Lett. 67, 1130 (1991).

    Article  ADS  Google Scholar 

  112. M. Horn-von Hoegen, M. Copel, J. C. Tsang, et al., Phys. Rev. B 50, 10811 (1994).

    Article  ADS  Google Scholar 

  113. D. J. Eaglesham, A. E. White, L. C. Feldman, et al., Phys. Rev. Lett. 70, 1643 (1993).

    Article  ADS  Google Scholar 

  114. H. J. Osten, J. Klatt, G. Lippert, et al., Phys. Rev. Lett. 69, 450 (1992).

    Article  ADS  Google Scholar 

  115. J. M. C. Thornton, A. A. Williams, J. E. Macdonald, et al., Surf. Sci. 273, 1 (1992).

    Article  ADS  Google Scholar 

  116. T. F. Wietler, E. Bugiel, and K. R. Hofmann, Appl. Phys. Lett. 87, 182102 (2005); Thin Solid Films 508, 6 (2006).

    Google Scholar 

  117. M. Bauer, J. Taraci, J. Tolle, et al., Appl. Phys. Lett. 81, 2992 (2002).

    Article  ADS  Google Scholar 

  118. R. Roucka, J. Tolle, C. Cook, et al., Appl. Phys. Lett. 86, 191912 (2005).

    Article  ADS  Google Scholar 

  119. J. Tolle, R. Roucka, A. V. G. Chizmeshya, et al., Appl. Phys. Lett. 88, 252112 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. B. Bolkhovityanov.

Additional information

Original Russian Text © Yu.B. Bolkhovityanov, A.K. Gutakovskii, A.S. Deryabin, O.P. Pchelyakov, L.V. Sokolov, 2008, published in Fizika i Tekhnika Poluprovodnikov, 2008, Vol. 42, No. 1, pp. 3–22.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolkhovityanov, Y.B., Gutakovskii, A.K., Deryabin, A.S. et al. Potentialities and basic principles of controlling the plastic relaxation of GeSi/Si and Ge/Si films with stepwise variation in the composition. Semiconductors 42, 1–20 (2008). https://doi.org/10.1134/S1063782608010016

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782608010016

PACS numbers

Navigation