Skip to main content
Log in

Potential of using the Cd0.8Hg0.2Te alloy in solar cells

  • Physics of Semiconductor Devices
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Surface-barrier diodes based on the CdxHg1−x Te alloy (x ∼ 0.8) sensitive in the wavelength range 0.3–1.1 μm, which were obtained by etching (bombardment) of the surface of the p-type crystal with argon ions, are studied. Using the measured spectral absorption and reflection curves, as well as the parameters of the diode structure, which were found from electrical characteristics, the spectra of photoelectric quantum efficiency of diodes are calculated. The results of the calculation of photoelectric parameters of the Gd0.8Hg0.2Te-based diodes are given in comparison with the CdTe-based and Si-based solar cells. For the AM1.5 solar irradiation conditions, the open-circuit voltage and short-circuit current, as well as values of limiting efficiency, are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Kosyachenko, V. V. Kulchynsky, and V. M. Sklyarchuk, in Abstracts of XXXIV International School on the Physics of Semiconducting Compounds (Jaszowiec, Poland, 2005), p. 61.

    Google Scholar 

  2. L. A. Kosyachenko, V. V. Kulchynsky, O. L. Maslyanchuk, et al., Semicond. Phys. Quantum Electron. Optoelectron. 6, 227 (2003).

    Google Scholar 

  3. S. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981; Mir, Moscow, 1984).

    Google Scholar 

  4. A. E. Rakhshani, Semicond. Sci. Technol. 17, 924 (2002).

    Article  ADS  Google Scholar 

  5. A. E. Rakhshani, Phys. Status Solidi 192, 179 (2002).

    ADS  Google Scholar 

  6. J. I. Pankove, Optical Processes in Semiconductors (Prentice-Hall, Englewood Cliffs, N.J., 1971; Mir, Moscow, 1973).

    Google Scholar 

  7. G. L. Hahsen, J. L. Schmit, and T. N. Casselman, J. Appl. Phys. 53, 7099 (1982).

    Article  ADS  Google Scholar 

  8. P. M. Amirtharaj, Handbook of Optical Constants of Solids, Ed. by D. Palik (Academic, San Diego, 1991), Vol. 2.

    Google Scholar 

  9. Yu. A. Ukhanov, Optical Properties of Semiconductors (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  10. H. R. Philipp and E. A. Taft, Phys. Rev. 8, 13 (1962).

    Google Scholar 

  11. T. Toshifumi, S. Adachi, H. Nakanishi, and K. Ohtsuka, Jpn. J. Appl. Phys., Part 1 32, 3496 (1993).

    Article  Google Scholar 

  12. Standard Tables for Reference Solar Spectral Irradiance at Air Mass 1.5. International Organization for Standardization (ISO), www.iso.ch.

  13. D. L. Staebler and C. R. Wronski, Appl. Phys. Lett. 31, 292 (1977).

    Article  ADS  Google Scholar 

  14. G. Bahir and E. Finkman, J. Vac. Sci. Technol. A 7, 248 (1989).

    Article  Google Scholar 

  15. P. Brogowski, H. Mucha, and J. Piotrowski, Phys. Status Solidi A 114, K37 (1989).

    Google Scholar 

  16. P. Handek, E. Belas, J. Franc, and V. Koubele, Semicond. Sci. Technol. 8, 2069 (1993).

    Article  ADS  Google Scholar 

  17. E. Belas, P. Hoschl, R. Grill, et al., Semicond. Sci. Technol. 8, 1695 (1993).

    Article  ADS  Google Scholar 

  18. A. L. Fahrenbruch and R. H. Bube, Fundamentals of Solar Cells (Academic, New York, 1983; Énergoatommash, Moscow, 1987).

    Google Scholar 

  19. C. Sah, R. Noyce, and W. Shockley, Proc. IRE 45, 1228 (1957).

    Article  Google Scholar 

  20. L. A. Kosyachenko, I. M. Rarenko, Z. I. Zaxarchuk, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 37, 238 (2003) [Semiconductors 37, 227 (2003)].

    Google Scholar 

  21. L. A. Kosyachenko, O. L. Maslyanchuk, V. V. Motushchuk, and V. M. Sklyarchuk, Sol. Energy Mater. Sol. Cells 82, 65 (2004).

    Article  Google Scholar 

  22. L. A. Kosyachenko, A. V. Markov, E. L. Maslyanchuk, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 37, 1420 (2003) [Semiconductors 37, 1373 (2003)].

    Google Scholar 

  23. P. S. Kireev, Physics of Semiconductors (Vysshaya Shkola, Moscow, 1975) [in Russian].

    Google Scholar 

  24. K. Seeger, Semiconductor Physics (Springer, Berlin, 1974; Mir, Moscow, 1977).

    Google Scholar 

  25. M. Lavagna, J. P. Pique, and Y. Marfaing, Solid-State Electron. 20, 235 (1977).

    Article  ADS  Google Scholar 

  26. L. A. Kosyachenko, V. M. Sklyarchuk, Ye. F. Sklyarchuk, and K. S. Ulyanitsky, Semicond. Sci. Technol. 14, 373 (1999).

    Article  ADS  Google Scholar 

  27. E. Mori and K. K. Mishra, J. Electrochem. Soc. 137, 100 (1990).

    Article  Google Scholar 

  28. Sun Weiguo, L. A. Kosyachenko, and I. M. Rarenko, J. Vac. Sci. Technol. A 15, 2202 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © L.A. Kosyachenko, V.V. Kulchinsky, S.Yu. Paranchych, V.M. Sklyarchuk, 2007, published in Fizika i Tekhnika Poluprovodnikov, 2007, Vol. 41, No. 1, pp. 95–103.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosyachenko, L.A., Kulchinsky, V.V., Paranchych, S.Y. et al. Potential of using the Cd0.8Hg0.2Te alloy in solar cells. Semiconductors 41, 94–102 (2007). https://doi.org/10.1134/S1063782607010186

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782607010186

PACS numbers

Navigation