Skip to main content
Log in

Quantum efficiency and formation of the emission line in light-emitting diodes based on InGaN/GaN quantum well structures

  • Low-Dimensional Systems
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The spectra of electroluminescence, photoluminescence, and photocurrent for the In0.2Ga0.8N/GaN quantum-well structures are studied to clarify the causes for the reduction in quantum efficiency with increasing forward current. It is established that the quantum efficiency decreases as the emitting photon energy approaches the mobility edge in the In0.2Ga0.8N layer. The mobility edge determined from the photocurrent spectra is E me = 2.89 eV. At the photon energies hv > 2.69 eV, the charge carriers can tunnel to nonradiative recombination centers with a certain probability, and therefore, the quantum efficiency decreases. The tunnel injection into deep localized states provides the maximum electroluminescence efficiency. This effect is responsible for the origin of the characteristic maximum in the quantum efficiency of the emitting diodes at current densities much lower than the operating densities. Occupation of the deep localized states in the density-of-states “tails” in InGaN plays a crucial role in the formation of the emission line as well. It is shown that the increase in the quantum efficiency and the “red” shift of the photoluminescence spectra with the voltage correlate with the changes in the photocurrent and occur due to suppression of the separation of photogenerated carriers in the field of the space charge region and to their thermalization to deep local states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. S. Jeon, V. Kozlov, Y. K. Song, et al., Appl. Phys. Lett. 69, 4194 (1996).

    Article  ADS  Google Scholar 

  2. S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Appl. Phys. Lett. 69, 4188 (1996).

    Article  ADS  Google Scholar 

  3. P. Perlin, V. Iota, B. A. Weinstein, et al., Appl. Phys. Lett. 70, 2993 (1997).

    Article  ADS  Google Scholar 

  4. Y. H. Cjo, G. H. Gainer, A. J. Fischer, et al., Appl. Phys. Lett. 73, 1370 (1998).

    Article  ADS  Google Scholar 

  5. P. Lefebvre, J. Allegre, B. Gil, et al., Phys. Rev. B 57, R9447 (1998).

    Article  ADS  Google Scholar 

  6. T. Mukai, K. Takekava, and S. Nakamura, Jpn. J. Appl. Phys., Part 2 37, L839 (1996).

    Article  Google Scholar 

  7. Y. Narukava, Y. Kawakami, M. Funato, et al., Appl. Phys. Lett. 70, 981 (1997).

    Article  ADS  Google Scholar 

  8. Y. Narukava, Y. Kawakami, S. Fujita, et al., Phys. Rev. B 55, R1938 (1997).

    Article  ADS  Google Scholar 

  9. P. Fisher, J. Christen, and S. Nakamura, Jpn. J. Appl. Phys., Part 2 39, L129 (2000).

    Article  Google Scholar 

  10. T. Takeuchi, S. Sota, M. Katsuragawa, et al., Jpn. J. Appl. Phys., Part 2 36, L382 (1997).

    Article  Google Scholar 

  11. Y. Narukava, Y. Kavakami, S. Fujita, and S. Nakamura, Phys. Rev. B 59, 10283 (1999).

    Article  ADS  Google Scholar 

  12. R. W. Martin, P. G. Middleton, E. P. O’Donnell, and W. Van der Stricht, Appl. Phys. Lett. 74, 263 (1999).

    Article  ADS  Google Scholar 

  13. H. C. Casey, Jr., J. Muth, S. Krishnankutty, and J. M. Zavada, Appl. Phys. Lett. 68, 2867 (1996).

    Article  ADS  Google Scholar 

  14. T. Takeuchi, C. Wetzel, S. Yamaguchi, et al., Appl. Phys. Lett. 73, 1691 (1998).

    Article  ADS  Google Scholar 

  15. T. Mukai, M. Yamada, and S. Nakamura, Jpn. J. Appl. Phys., Part 1 38, 3976 (1999).

    Article  Google Scholar 

  16. K. Domen, R. Soejima, A. Kuramata, and T. Tanahashi, MRS Internet J. Nitride Semicond. Res. 3, 1 (1998).

    Google Scholar 

  17. Y. Zohta, H. Kuroda, R. Nii, and S. Nakamura, J. Cryst. Growth 189–190, 816 (1998).

    Article  Google Scholar 

  18. N. I. Bochkareva, E. A. Zhirnov, A. A. Efremov, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 39, 627 (2005) [Semiconductors 39, 594 (2005)].

    Google Scholar 

  19. Y. T. Rebane, N. I. Bochkareva, V. E. Bougrov, et al., Proc. SPIE 4996, 113 (2003).

    Google Scholar 

  20. F. Urbach, Phys. Rev. 92, 1324 (1953).

    Article  ADS  Google Scholar 

  21. H. C. Casey, Jr., J. Muth, S. Krishnankutty, and J. M. Zavada, Appl. Phys. Lett. 68, 2867 (1996).

    Article  ADS  Google Scholar 

  22. P. Perlin, M. Osinski, P. G. Eliseev, et al., Appl. Phys. Lett. 69, 1680 (1996).

    Article  ADS  Google Scholar 

  23. H. Morkos, Nitride Semiconductors and Devices (Springer, Berlin, 1999).

    Google Scholar 

  24. S. E. Aleksandrov, T. A. Gavrikova, and V. A. Zykov, Fiz. Tekh. Poluprovodn. (St. Petersburg) 34, 1347 (2000) [Semiconductors 34, 1295 (2000)].

    Google Scholar 

  25. G. E. Pikus, Fundamentals of the Theory of Semiconductor Devices (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  26. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory, 4th ed. (Nauka, Moscow, 1989; Pergamon, Oxford, 1977).

    Google Scholar 

  27. D. S. Sizov, V. S. Sizov, E. E. Zavarin, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 39, 264 (2005) [Semiconductors 39, 249 (2005)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.I. Bochkareva, D.V. Tarkhin, Yu.T. Rebane, R.I. Gorbunov, YU.S. Lelikov, I.A. Martynov, Yu.G. Shreter, 2007, published in Fizika i Tekhnika Poluprovodnikov, 2007, Vol. 41, No. 1, pp. 88–94.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bochkareva, N.I., Tarkhin, D.V., Rebane, Y.T. et al. Quantum efficiency and formation of the emission line in light-emitting diodes based on InGaN/GaN quantum well structures. Semiconductors 41, 87–93 (2007). https://doi.org/10.1134/S1063782607010174

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782607010174

PACS numbers

Navigation