Skip to main content
Log in

Diffusion-barrier contacts based on the TiN and Ti(Zr)Bx interstitial phases in the microwave diodes for the range of 75–350 GHz

  • Physics of Semiconductor Devices
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

A new technology for thermally stable ohmic contacts with diffusion barriers based on the amorphous TiN and Ti(Zr)Bx interstitial phases is used in the development of microwave diodes for the millimeter region (with the frequency higher than 100 GHz) based on GaAs, InP, and Si. It became possible to increase the reliability of the GaAs-and InP-based Gunn diodes that operate at the frequency of 200 GHz by using the epitaxial layers formed on porous III–V substrates by gas-phase, molecular-beam, and liquid-phase epitaxy as the initial device structures. The range of emission from the avalanche transit-time diodes based on Si is extended to 350 GHz. To this end, the technology of forming the active element on the silicon metallized diaphragm is used for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. G. Bozhkov, V. V. Vilisova, K. I. Kurkan, et al., Élektron. Prom-st, No. 3, 82 (1993).

  2. V. G. Bozhkov, V. A. Gennenberg, K. I. Kurkan, et al., Élektron. Prom-st, No. 3, 88 (1993).

  3. V. G. Bozhkov and V. S. Lukash, Vestn. Tomsk. Gos. Univ., Ser. Fiz., No. 285, 129 (2005).

  4. I. I. Eru, Usp. Sovrem. Radioélektron., No. 3, 51 (1997).

  5. H. Eisele and G. I. Haddad, IEEE Trans. Microwave Theory Tech. 46, 739 (1998).

    Article  Google Scholar 

  6. R. P. Bystrov, S. I. Samoĭlov, and A. V. Sokolov, Zarubezh. Radioélektron., No. 10, 60 (1999).

  7. S. P. Rakitin, N. F. Karushkin, Yu. A. Tsvirko, et al., in Proceedings of 10th International Crimean Conference on Microwave and Telecommunication Technologies, CriMiCo’2000 (Veber, Sevastopol, Ukr., 2000), p. 33.

    Google Scholar 

  8. A. B. Borzov, R. P. Bystrov, V. G. Dmitriev, et al., Zarubezh. Radioélektron., No. 4, 18 (2001).

  9. P. N. Siegel, IEEE Trans. Microwave Theory Tech. 50, 910 (2002).

    Article  Google Scholar 

  10. G. I. Haddad and R. J. Trew, IEEE Trans. Microwave Theory Tech. 50, 760 (2002).

    Article  Google Scholar 

  11. N. S. Boltovets, V. N. Ivanov, A. E. Belyaev, et al., in Proceedings of 5th ISTC SAC Seminar on Nanotechnologies in the Area of Physics, Chemistry and Biotechnology (Ioffe Physicotechnical Inst., St. Petersburg, 2002), p. 359.

    Google Scholar 

  12. R. V. Konakova, I. N. Arsent’ev, M. V. Baĭdakova, et al., in Abstracts of VI Russian Conference on the Physics of Semiconductors (Ioffe Physicotechnical Inst., St. Petersburg, 2003), p. 182.

    Google Scholar 

  13. I. N. Arsentev, A. V. Bobyl, S. G. Konnikov, et al., in Proceedings of 5th International Kharkov Symposium on Physics and Engineering of Microwaves Millimeter and Submillimeter Waves (Kharkov, Ukraine, 2004), Vol. 2, p. 572.

    Google Scholar 

  14. G. F. Tereshchenko, I. N. Arsent’ev, A. V. Bobyl’, et al., in Abstracts of Conference on Nanodimensional Systems, NANSIS 2004 (IMF NANU, Kiev, 2004), p. 20.

    Google Scholar 

  15. A. E. Belyaev, N. S. Boltovets, A. V. Bobyl, et al., in Abstracts of 1st Ukraine-Korea Seminar on Nanophotonics and Nanophysics (Kiev, Ukraine, 2005), p. 11.

    Google Scholar 

  16. V. F. Oleĭnik, V. L. Bulgach, V. V. Valyaev, A. V. Zorenko, D. V. Mironov, and V. E. Chaĭka, Millimeter-and Submillimeter-Wave Electronic Devices Based on Nanotechnology (GUIKT, Kiev, 2004) [in Russian].

    Google Scholar 

  17. E. V. Buzaneva, Microstructures of Integrated Electronics (Radio i Svyaz’, Moscow, 1990) [in Russian].

    Google Scholar 

  18. V. F. Dorfman, Micrometallurgy in Microelectronics. Technological Principles in Semiconductor Device Making (Metallurgiya, Moscow, 1978) [in Russian].

    Google Scholar 

  19. N. N. Bakin, Élektron. Prom-st, No. 9, 30 (1993).

  20. A. S. Komarov, L. N. Kravchenko, A. M. Krechmer, and L. G. Shapoval, Élektron. Prom-st, No. 9, 25 (1993).

  21. L. G. Lavrent’eva, M. D. Vilisova, and I. V. Ivonin, Vestn. Tomsk. Gos. Univ., Ser. Fiz., No. 285, 74 (2005).

  22. A. A. Sitnikova, A. V. Bobyl’, S. G. Konnikov, and V. P. Ulin, Fiz. Tekh. Poluprovodn. (St. Petersburg) 39, 552 (2005) [Semiconductors 39, 523 (2005)].

    Google Scholar 

  23. F. Yu. Soldatenkov, V. P. Ulin, A. A. Yakovenko, et al., Pis’ma Zh. Tekh. Fiz. 25(21), 15 (1999) [Tech. Phys. Lett. 25, 852 (1999)].

    Google Scholar 

  24. V. V. Mamutin, V. P. Ulin, V. V. Tret’yakov, et al., Pis’ma Zh. Tekh. Fiz. 25(1), 3 (1999) [Tech. Phys. Lett. 25, 1 (1999)].

    Google Scholar 

  25. Yu. N. Buzykin, S. A. Gusev, V. M. Danil’tsev, et al., Pis’ma Zh. Tekh. Fiz. 26(7), 64 (2000) [Tech. Phys. Lett. 26, 298 (2000)].

    Google Scholar 

  26. I. N. Arsent’ev, M. V. Baĭdakova, A. V. Bobyl’, et al., Pis’ma Zh. Tekh. Fiz. 28(17), 57 (2002) [Tech. Phys. Lett. 28, 735 (2002)].

    Google Scholar 

  27. N. S. Boltovets, V. V. Basanets, V. N. Ivanov, et al., Semicond. Phys., Quantum Electron Optoelectron. 3, 359 (2000).

    Google Scholar 

  28. N. S. Boltovets, V. N. Ivanov, R. V. Konakova, et al., Semicond. Phys., Quantum Electron. Optoelectron. 4, 93 (2001).

    Google Scholar 

  29. N. S. Boltovets, V. V. Basanets, A. V. Tsvir, et al., in Proceedings of 10th International Crimean Conference on Microwave and Telecommunication Technologies, CriMiCo’2000 (Veber, Sevastopol, Ukr., 2000), p. 139.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.S. Boltovets, V.N. Ivanov, A.E. Belyaev, R.V. Konakova, Ya.Ya. Kudrik, V.V. Milenin, I.N. Arsent’ev, A.V. Bobyl, P.N. Brunkov, I.S. Tarasov, A.A. Tonkikh, V.P. Ulin, V.V. Ustinov, G.E. Cirlin, 2006, published in Fizika i Tekhnika Poluprovodnikov, 2006, Vol. 40, No. 6, pp. 753–757.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boltovets, N.S., Ivanov, V.N., Belyaev, A.E. et al. Diffusion-barrier contacts based on the TiN and Ti(Zr)Bx interstitial phases in the microwave diodes for the range of 75–350 GHz. Semiconductors 40, 734–738 (2006). https://doi.org/10.1134/S1063782606060200

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782606060200

PACS numbers

Navigation