Skip to main content
Log in

Effect of the joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs

  • Physics of Semiconductor Devices
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The heat model of a light-emitting diode (LED) with an InGaN/GaN quantum well (QW) in the active region is considered. Effects of the temperature and drive current, as well as of the size and material of the heat sink on the light output and efficiency of blue LEDs are studied. It is shown that, for optimal heat removal, decreasing of the LED efficiency as current increases to 100 mA is related to the effect of electric field on the efficiency of carrier injection into the QW. As current further increases up to 400 mA, the decrease in efficiency is caused by Joule heating. It is shown that the working current of LEDs can be increased by a factor of 5–7 under optimal heat removal conditions. Recommendations are given on the cooling of LEDs in a manner dependent on their power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Yamada, T. Mitani, Y. Nurukawa, et al., Jpn. J. Appl. Phys. 41, L1431 (2002).

    Google Scholar 

  2. Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes, Ed. by S. Nakamura and S. F. Chichibu (Taylor and Francis, London, 2000).

    Google Scholar 

  3. Yu. G. Shreter, Yu. T. Rebane, V. A. Zykov, and I. G. Sidorov, Wide-gap Semiconductors (Nauka, St. Petersburg, 2001) [in Russian].

    Google Scholar 

  4. Y. T. Rebane, N. I. Bochkareva, V. E. Bougrov, et al., Proc. SPIE 4996, 113 (2003).

    Google Scholar 

  5. N. I. Bochkareva, E. A. Zhirnov, A. A. Efremov, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 39, 627 (2005) [Semiconductors 39, 594 (2005)].

    Google Scholar 

  6. S. Lee, S. Song, V. Au, and K. P. Moran, Proc. ASME/JSME Therm. Eng. Conf. 4, 199 (1995).

    Google Scholar 

  7. T. Mukai, M. Yamada, and S. Nakamura, Jpn. J. Appl. Phys. 38, 3976 (1999).

    Google Scholar 

  8. Y. Xi and E. F. Schubert, Appl. Phys. Lett. 85, 2163 (2004).

    Article  ADS  Google Scholar 

  9. Y. Xi, J.-Q. Xi, Th. Gessmann, et al., Appl. Phys. Lett. 86, 031 907 (2005).

  10. M. Kuball, S. Pajasingam, A. Sarua, et al., Appl. Phys. Lett. 82, 124 (2003).

    Article  ADS  Google Scholar 

  11. C. Winnewiesser and J. Schneider, J. Appl. Phys. 89, 3091 (2001).

    ADS  Google Scholar 

  12. http://literature.agilent.com/litweb/pdf/5965-8097E.pdf.

  13. D. A. Steigerwald, J. C. Bhat, D. Collins, et al., IEEE J. Sel. Top. Quantum Electron. 8, 310 (2002).

    Google Scholar 

  14. F. P. Incropera and D. P. De Witt, Fundamentals of Heat and Mass Transfer (Wiley, New York, 1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.A. Efremov, N.I. Bochkareva, R.I. Gorbunov, D.A. Lavrinovich, Yu.T. Rebane, D.V. Tarkhin, Yu.G. Shreter, 2006, published in Fizika i Tekhnika Poluprovodnikov, 2006, Vol. 40, No. 5, pp. 621–627.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Efremov, A.A., Bochkareva, N.I., Gorbunov, R.I. et al. Effect of the joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs. Semiconductors 40, 605–610 (2006). https://doi.org/10.1134/S1063782606050162

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782606050162

PACS numbers

Navigation