Skip to main content
Log in

Studies of physical phenomena in semiconductor nanostructures using samples with laterally nonuniform layers. Photoluminescence of structures with n-type δ-doped layers

  • Low-Dimensional Systems
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Photoluminescence of a structure based on GaAs with δ-doped n-type layers is studied experimentally at 77 K in the context of a previously suggested spectral-correlative method for investigating semiconductor structures with laterally nonuniform layers. This method makes it possible to study (for the same sample) the features of the observed multicomponent photoluminescence spectrum in relation to two parameters, i.e., the distance between the δ-doped layers and the width of a narrow InGaAs quantum well located between these layers. The results obtained make it possible to relate the observed exponential increase in the intensity of photoluminescence from the region of δ-doped layers as these parameters are varied to the variation in the ratio between the concentration of the holes laterally localized in the minimums of the fluctuation potential and that of free two-dimensional holes. An effect of stabilization of the energy position of the photoluminescence spectral lines is observed; this effect is related to the localization of holes in the potential well between the δ-doped layers. The experimental data obtained are consistent with the results of our numerical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. V. Khabarov, RU Patent No. 2 168 238 (2001).

  2. Yu. V. Khabarov, Fiz. Tekh. Poluprovodn. (St. Petersburg) 37, 339 (2003) [Semiconductors 37, 322 (2003)].

    Google Scholar 

  3. Yu. V. Khabarov, V. V. Kapaev, and V. A. Petrov, Fiz. Tekh. Poluprovodn. (St. Petersburg) 38, 455 (2004) [Semiconductors 38, 437 (2004)].

    Google Scholar 

  4. W. M. Zheng, M. P. Halsall, P. Harmer, et al., Appl. Phys. Lett. 84, 735 (2004).

    ADS  Google Scholar 

  5. S. M. Landi, C. V.-B. Tribuzy, P. L. Souza, et al., Phys. Rev. B 67, 085304 (2003).

    Google Scholar 

  6. A. Cavalheiro, E. C. F. da Silva, A. A. Quivi, et al., J. Phys.: Condens. Matter 15, 121 (2003).

    Article  ADS  Google Scholar 

  7. E. Ozturk and I. Sokmen, Superlattices Microstruct. 35, 95 (2004).

    ADS  Google Scholar 

  8. J. Osvald, Physica E (Amsterdam) 23, 147 (2004).

    ADS  Google Scholar 

  9. E. Ozturk, H. Sari, V. Erdun, and I. Sokmen, Physica B (Amsterdam) 334, 1 (2003).

    ADS  Google Scholar 

  10. V. A. Kul’bachinskiĭ, V. G. Kytin, R. A. Lunin, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 33, 839 (1999) [Semiconductors 33, 771 (1999)].

    Google Scholar 

  11. J. C. M. Henning, Y. A. R. R. Kessener, P. M. Koenraad, et al., Semicond. Sci. Technol. 6, 1079 (1991).

    Article  ADS  Google Scholar 

  12. J. Vagner, A. Fischer, and K. Ploog, Phys. Rev. B 42, 7280 (1990).

    ADS  Google Scholar 

  13. A. M. Vasil’ev, P. S. Kop’ev, M. Yu. Nadtochiĭ, and V. M. Ustinov, Fiz. Tekh. Poluprovodn. (St. Petersburg) 23, 2133 (1998) [Semiconductors 23, 1320 (1989)].

    Google Scholar 

  14. V. G. Mokerov, Yu. V. Fedorov, A. V. Guk, and Yu. V. Khabarov, Dokl. Akad. Nauk 367, 40 (1998) [Dokl. Phys. 44, 432 (1999)].

    Google Scholar 

  15. J. Wagner, A. Fischer, and K. Ploog, Appl. Phys. Lett. 59, 482 (1991).

    Google Scholar 

  16. A. C. Maciel, M. Tatham, J. F. Ryan, et al., Surf. Sci. 228, 251 (1990).

    Article  Google Scholar 

  17. B. Ullrich, X. Zhang, and K. von Klitzing, Appl. Phys. Lett. 54, 1123 (1989).

    Article  ADS  Google Scholar 

  18. A. M. Gilinsky, K. S. Zhuravlev, D. I. Lubishev, et al., Superlattices Microstruct. 10, 399 (1991).

    ADS  Google Scholar 

  19. Er-Xuan Ping and V. Dalal, J. Appl. Phys. 74, 5349 (1993).

    Article  ADS  Google Scholar 

  20. G. M. Sipahi, R. Enderlein, L. M. R. Scolfaro, et al., Phys. Rev. B 57, 9168 (1997).

    ADS  Google Scholar 

  21. R. Enderlein, G. M. Sipahi, L. M. R. Scolfaro, et al., Mater. Sci. Eng. B 35, 396 (1995).

    Article  Google Scholar 

  22. G. M. Sipahi, R. Enderlein, L. M. R. Scolfaro, and J. R. Leite, Phys. Rev. B 53, 9930 (1995).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Yu.V. Khabarov, V.V. Kapaev, V.A. Petrov, G.B. Galiev, 2006, published in Fizika i Tekhnika Poluprovodnikov, 2006, Vol. 40, No. 5, pp. 572–583.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khabarov, Y.V., Kapaev, V.V., Petrov, V.A. et al. Studies of physical phenomena in semiconductor nanostructures using samples with laterally nonuniform layers. Photoluminescence of structures with n-type δ-doped layers. Semiconductors 40, 558–569 (2006). https://doi.org/10.1134/S1063782606050095

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782606050095

PACS numbers

Navigation