Skip to main content
Log in

Magnetotransport properties of type II heterojunctions based on GaInAsSb/InAs and GaInAsSb/GaSb

  • Electronic and Optical Properties of Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The results of detailed study of the magnetotransport properties of broken-gap type II heterojunctions in a GaInAsSb/InAs(GaSb) system are reported. An electron channel with a high charge-carrier mobility (as high as 50000–60000 cm2/(V s)) is observed and studied for the first time in an isotype broken-gap p-GaInAsSb/p-InAs heterostructure. The effects of electron-channel depletion and semimetal-semiconductor transition in the case of heavy doping of the quaternary alloy with acceptors are studied. Magnetotransport properties at temperatures of 4.2–200 K are studied in detail. Data on the energy spectrum and parameters of two-dimensional charge carriers at the heteroboundary are obtained. It is ascertained experimentally that, depending on the composition, either staggered (at x = 0.85) or broken-gap (at x = 0.95) heterojunctions can be formed in the Ga1−x InxAsySb1−y /GaSb, which is confirmed by theoretical calculations. The anomalous Hall effect and negative magnetoresistance were observed in GaInAsSb/InAs:Mn grown on substrates doped heavily with Mn magnetic acceptor impurity so that the hole concentration was as high as p > 5 × 1018 cm−3; these phenomena are caused by exchange interaction of Mn ions in InAs with high-mobility charge carriers in the electron channel at the heterointerface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Baranov, A. N. Imenkov, V. V. Sherstnev, and Yu. P. Yakovlev, Appl. Phys. Lett. 64, 2480 (1994).

    Article  ADS  Google Scholar 

  2. K. D. Moiseev, M. P. Mikhailova, B. I. Zhurtanov, et al., Appl. Surf. Sci. 252, 257 (1998).

    Google Scholar 

  3. K. D. Moiseev, M. P. Mikhaĭlova, O. G. Ershov, and Yu. P. Yakovlev, Fiz. Tekh. Poluprovodn. (St. Petersburg) 30, 41 (1996) [Semiconductors 30, 21 (1996)].

    Google Scholar 

  4. T. S. Haserberg, R. H. Miles, and L. West, IEEE J. Quantum Electron. 33, 1403 (1997).

    Google Scholar 

  5. N. D. Stoyanov, M. P. Mikhaĭlova, O. V. Andreĭchuk, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 35, 467 (2001) [Semiconductors 35, 453 (2001)].

    Google Scholar 

  6. L. Esaki, G. A. Sai-Halasz, and W. A. Harrison, Phys. Rev. B 18, 2812 (1978).

    ADS  Google Scholar 

  7. M. Nakao, S. Yoshida, and S. Gonda, Solid State Commun. 49, 663 (1984).

    Article  Google Scholar 

  8. M. P. Mikhailova and A. N. Titkov, Semicond. Sci. Technol. 9, 1279 (1994).

    Article  ADS  Google Scholar 

  9. H. Sakaki, T. Noda, K. Hirakawa, et al., Appl. Phys. Lett. 51, 1934 (1987).

    Article  ADS  Google Scholar 

  10. W. R. Frensley and H. Kroemer, Phys. Rev. B 16, 2642 (1977).

    Article  ADS  Google Scholar 

  11. M. P. Mikhailova, T. I. Voronina, T. S. Lagunova, et al., in Abstracts of 3rd International Symposium on Nanostructures: Physics and Technology (St. Petersburg, 1995), p. 49.

  12. T. I. Voronina, T. S. Lagunova, M. P. Mikhaĭlova, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 30, 985 (1996) [Semiconductors 30, 523 (1996)].

    Google Scholar 

  13. T. I. Voronina, T. S. Lagunova, M. P. Mikhaĭlova, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 31, 897 (1997) [Semiconductors 31, 763 (1997)].

    Google Scholar 

  14. T. S. Lagunova, T. I. Voronina, M. P. Mikhaĭlova, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 32, 278 (1998) [Semiconductors 32, 195 (1998)].

    Google Scholar 

  15. C. A. Hoffman, J. R. Meyer, E. R. Youngdale, et al., Solid-State Electron. 37, 1203 (1994).

    Article  Google Scholar 

  16. G. K. Bologesi, H. Kroemer, and J. H. English, Appl. Phys. Lett. 51, 1934 (1992).

    Google Scholar 

  17. K. D. Moiseev, A. A. Sitnikova, N. N. Faleev, and Yu. P. Yakovlev, Fiz. Tekh. Poluprovodn. (St. Petersburg) 34, 1438 (2000) [Semiconductors 34, 1381 (2000)].

    Google Scholar 

  18. P. S. Kop’ev, S. V. Ivanov, N. N. Ledentsov, et al., Sov. Phys. Semicond. 24, 317 (1990).

    Google Scholar 

  19. M. P. Mikhaĭlova, G. G. Zegrya, K. D. Moiseev, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 29, 687 (1995) [Semiconductors 29, 357 (1995)].

    Google Scholar 

  20. M. P. Mikhailova, G. G. Zegrya, K. D. Moiseev, and Yu. P. Yakovlev, Solid-State Electron. 40, 673 (1996).

    Article  Google Scholar 

  21. K. D. Moiseev, A. Krier, M. P. Mikhailova, and Yu. P. Yakovlev, Proc. SPIE 5023, 340 (2003).

    ADS  Google Scholar 

  22. M. P. Mikhailova, K. D. Moiseev, R. V. Parfeniev, et al., IEE Proc.: Optoelectron. 145, 268 (1998).

    Article  Google Scholar 

  23. K. D. Moiseev, V. A. Berezovets, M. P. Mikhailova, et al., Surf. Sci. 482–485, 1083 (2001).

    Google Scholar 

  24. T. I. Voronina, T. S. Lagunova, M. P. Mikhaĭlova, et al., Pis’ma Zh. Tekh. Fiz. 22, 34 (1996) [Tech. Phys. Lett. 22, 792 (1996)].

    Google Scholar 

  25. T. Ando, A. B. Fowler, and F. Stern, Electronic Properties of Two-Dimensional Systems (Am. Phys. Soc., New York, 1982; Mir, Moscow, 1985).

    Google Scholar 

  26. K. D. Moiseev, J. Zeman, M. L. Sadowski, et al., in Abstracts of 11th International Conference on Nanostructures: Physics and Technology (St. Petersburg, Russia, 2003), p. 216.

    Google Scholar 

  27. T. I. Voronina, B. E. Dzhurtanov, T. S. Lagunova, and Yu. P. Yakovlev, Fiz. Tekh. Poluprovodn. (Leningrad) 25, 285 (1991) [Sov. Phys. Semicond. 25, 171 (1991)].

    Google Scholar 

  28. L. Esaki, Lect. Notes Phys. 133, 302 (1980).

    Google Scholar 

  29. T. S. Lagunova, T. I. Voronina, M. P. Mikhaĭlova, et al., in Abstracts of III All-Russian Conference on the Physics of Semiconductors (FIAN, Moscow, 1997), p. 170.

    Google Scholar 

  30. I. A. Andreev, T. I. Voronina, T. S. Lagunova, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 29, 678 (1995) [Semiconductors 29, 353 (1995)].

    Google Scholar 

  31. Handbook Series on Semiconductor Parameters, Ed. by M. Levinshtein, S. Rumyantsev, and M. Shur (World Sci., Singapore, 1996), Vol. 1.

    Google Scholar 

  32. A. G. Milnes and D. L. Feucht, Heterojunctions and Metal-Semiconductor Junctions (Academic, New York, 1972; Mir, Moscow, 1975).

    Google Scholar 

  33. R. Magri, A. Zunger, and H. Kroemer, in Book of Abstracts of 6th International Conference MIOMD-VI (St. Petersburg, Russia, 2004), p. 59.

    Google Scholar 

  34. T. S. Lagunova, T. I. Voronina, M. P. Mikhaĭlova, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 37, 901 (2003) [Semiconductors 37, 872 (2003)].

    Google Scholar 

  35. D. G. Adrianov, V. V. Karataev, G. V. Lazareva, et al., Fiz. Tekh. Poluprovodn. (Leningrad) 11, 1252 (1977) [Sov. Phys. Semicond. 11, 738 (1977)].

    Google Scholar 

  36. D. G. Adrianov, G. V. Lazareva, A. S. Savel’ev, and V. I. Fistul’, Fiz. Tekh. Poluprovodn. (Leningrad) 10, 568 (1976) [Sov. Phys. Semicond. 10, 339 (1976)].

    Google Scholar 

  37. D. G. Adrianov and A. S. Savel’ev, Fiz. Tekh. Poluprovodn. (Leningrad) 14, 539 (1980) [Sov. Phys. Semicond. 14, 317 (1980)].

    Google Scholar 

  38. S. V. Vonsovskiĭ, Modern Theory of Magnetism (GITTL, Moscow, 1953) [in Russian].

    Google Scholar 

  39. Y. Toyazawa, J. Phys. Soc. Jpn. 17, 986 (1962).

    Google Scholar 

  40. N. Kuze, K. Nagase, S. Muramatsu, et al., J. Cryst. Growth 150, 1307 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © T.I. Voronina, T.S. Lagunova, M.P. Mikhaĭlova, K.D. Moiseev, A.F. Lipaev, Yu.P. Yakovlev, 2006, published in Fizika i Tekhnika Poluprovodnikov, 2006, Vol. 40, No. 5, pp. 519–535.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voronina, T.I., Lagunova, T.S., Mikhaĭlova, M.P. et al. Magnetotransport properties of type II heterojunctions based on GaInAsSb/InAs and GaInAsSb/GaSb. Semiconductors 40, 503–520 (2006). https://doi.org/10.1134/S1063782606050022

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782606050022

PACS numbers

Navigation