Skip to main content
Log in

A manifestation of the tunneling conductivity of a thin-gate insulator in the generation kinetics of minority carriers in metal-insulator-semiconductor structures

  • Semiconductor Structures, Interfaces, and Surfaces
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The kinetics of the minority-charge-carrier generation current I(t), in the Al-n +-Si-SiO2-n-Si structures with a tunnel-transparent oxide layer, are found to be anomalous. Under depleting gate potentials (V g<0), sharp peaks are observed in the I(t) curves, whose descending branches attain a steady-state current level rapidly increasing with |V g|. The observed features are related to the tunneling conductivity of a thin (100 Å) oxide layer and with the impact generation of electron-hole pairs in a space charge region of Si by hot electrons that tunnel into the space charge region. Using this concept, an algorithm of the quantitative description of the experimental data is developed. This algorithm makes it possible to separate the components related to thermal and impact generation and the tunneling current component from the total current I(t). The impact ionization factor (α=1.2±0.2) and the energy of hot electrons in Si space charge region (E im=4.23 eV) are determined. Dynamic and steady-state current-voltage characteristics for the oxide layer coincide and obey the Fowler-Nordheim law. The position of the current maximum is controlled by external factors that stimulate the generation of non-equilibrium charge carriers; this effect can be used for the development of integrating and threshold sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Ioannou-Sougleridis, G. Vellianitis, and A. Dimoulas, J. Appl. Phys. 93, 3982 (2003).

    Article  ADS  Google Scholar 

  2. A. Kumar, M. V. Fischetti, T. H. Ning, and E. Gusev, J. Appl. Phys. 94, 1728 (2003).

    ADS  Google Scholar 

  3. P. W. Peacock and J. Robertson, Appl. Phys. Lett. 83, 2025 (2003).

    ADS  Google Scholar 

  4. Z.-W. Fu, W.-Y. Liu, C.-L. Li, et al., Appl. Phys. Lett. 83, 5008 (2003).

    ADS  Google Scholar 

  5. G. Apostolopoulos, G. Vellianitis, A. Dimoulas, et al., Appl. Phys. Lett. 84, 260 (2004).

    Article  ADS  Google Scholar 

  6. Charge-Coupled Devices and Systems, Ed. by M. J. Howes and D. V. Morgan (Wiley, Chichester, 1979; Énergoizdat, Moscow, 1981).

    Google Scholar 

  7. A. G. Zhdan, E. I. Gol’dman, Yu. V. Gulyaev, and G. V. Chucheva, Fiz. Tekh. Poluprovodn. (St. Petersburg) 39, 697 (2005) [Semiconductors 39, 666 (2005)].

    Google Scholar 

  8. S. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981; Mir, Moscow, 1984).

    Google Scholar 

  9. L. W. Nordheim, Phys. Z. 30, 177 (1929).

    MATH  Google Scholar 

  10. R. Fischer and H. Neumann, Fortschr. Phys. 14, 603 (1966) [Autoelectron Emission of Semiconductors (Nauka, Moscow, 1971)].

    Google Scholar 

  11. H. Ushizaka, J. Appl. Phys. 91, 9204 (2002).

    Article  ADS  Google Scholar 

  12. E. I. Gol’dman, A. G. Zhdan, and A. M. Sumaroka, Fiz. Tekh. Poluprovodn. (St. Petersburg) 26, 2048 (1992) [Sov. Phys. Semicond. 26, 1152 (1992)].

    Google Scholar 

  13. E. I. Gol’dman and A. G. Zhdan, Mikroélektronika 23, 3 (1994).

    Google Scholar 

  14. D. K. Schroder, Solid-State Electron. 13, 577 (1970).

    Article  MathSciNet  Google Scholar 

  15. D. K. Schroder and J. Guldberg, Solid-State Electron. 14, 1285 (1971).

    Article  Google Scholar 

  16. Y. Kano and A. Shibata, Jpn. J. Appl. Phys. 11, 1161 (1972).

    Google Scholar 

  17. V. A. Gergel’, V. A. Zimoglyad, N. V. Zykov, and V. V. Rakitin, Mikroélektronika 17, 496 (1988).

    Google Scholar 

  18. E. I. Gol’dman, A. G. Zhdan, and G. V. Chucheva, Prib. Tekh. Éksp., No. 6, 677 (1997) [Instrum. Exp. Tech. 40, 841 (1997)].

  19. C. G. B. Garrett and W. H. Brattain, Phys. Rev. 99, 376 (1955).

    Article  ADS  Google Scholar 

  20. V. S. Vavilov, Effects of Radiation on Semiconductors (Fizmatgiz, Moscow, 1963; Consultants Bureau, New York, 1965).

    Google Scholar 

  21. A. Khairurrijal, W. Mizubayashi, S. Miyazaki, and M. Hirose, Appl. Phys. Lett. 77, 3580 (2000).

    Article  ADS  Google Scholar 

  22. E. I. Goldman, N. F. Kukharskaya, and A. G. Zhdan, Solid-State Electron. 48, 831 (2004).

    Article  Google Scholar 

  23. L. A. Kasprzak, R. B. Laibowitz, and M. Ohring, J. Appl. Phys. 48, 4281 (1977).

    Article  ADS  Google Scholar 

  24. S. Horiguchi and H. Yoshino, J. Appl. Phys. 58, 1597 (1985).

    ADS  Google Scholar 

  25. M. Städele, F. Sacconi, A. Di Carlo, and P. Lugli, J. Appl. Phys. 93, 2681 (2003).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.G. Zhdan, G.V. Chucheva, E.I. Goldman, 2006, published in Fizika i Tekhnika Poluprovodnikov, 2006, Vol. 40, No. 2, pp. 195–201.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhdan, A.G., Chucheva, G.V. & Goldman, E.I. A manifestation of the tunneling conductivity of a thin-gate insulator in the generation kinetics of minority carriers in metal-insulator-semiconductor structures. Semiconductors 40, 190–196 (2006). https://doi.org/10.1134/S1063782606020151

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782606020151

PACS numbers

Navigation