Skip to main content
Log in

Activation of Aqueous Solutions Using a Multi-Spark Ring Discharge with Gas Injection in the Discharge Gap

  • LOW-TEMPERATURE PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The paper presents the results of studies of the formation of reactive oxygen and nitrogen species in Milli-Q® deionized water (electrical conductivity of ≤0.1 µS/cm) under the influence of a multi-spark pulse discharge with gas injection into the interelectrode space. The discharge is a set of microplasma formations in a multiphase medium, for which the specific energy input is estimated. The influence of injected gases (argon, air) on the formation of a plasma discharge in the interelectrode space and long-lived chemical compounds: hydrogen peroxide, nitrite ions and nitrate ions is analyzed. The variation of the exposure duration to water from 2 to 10 min leads to a change in its chemical composition and electrical conductivity properties, but has virtually no effect on the characteristics and duration of the breakdown stage of the discharge. At the same time, changes in the concentrations of hydrogen peroxide, nitrite ions and nitrate ions are recorded within 1 h after the termination of the plasma exposure. Sputtering of stainless steel electrodes is detected, which is about 1 mg/min and leads in some cases to the formation of an insoluble precipitate. The data obtained allow the optimization of the effect of plasma-activated liquid on plants and planting material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. P. J. Bruggeman, M. J. Kushner, B. R. Locke, J. G. E. Gardeniers, W. G. Graham, D. B. Graves, R. C. H. M. Hofman-Caris, D. Maric, J. P. Reid, E. Ceriani, D. Fernandez Rivas, J. E. Foster, S. C. Garrick, Y. Gorbanev, S. Hamaguchi, et al., Plasma Sources Sci. Technol. 25, 053002 (2016). https://doi.org/10.1088/0963-0252/25/5/053002

  2. P. J. Bruggeman, F. Iza, and R. Brandenburg, Plasma Sources Sci. Technol. 26, 123002 (2017). https://doi.org/10.1088/1361-6595/aa97af

  3. K. V. Artem’ev, N. N. Bogachev, N. G. Guseinzade, T. V. Dolmatov, L. V. Kolik, E. M. Konchekov, and S. E. Andreev, Russ. Phys. J. 62, 2073 (2020). https://doi.org/10.1007/s11182-020-01948-1

    Article  Google Scholar 

  4. T. Pavlik, V. Gudkova, D. Razvolyaeva, M. Pavlova, N. Kostukova, L. Miloykovich, L. Kolik, E. Konchekov, and N. Shimanovskii, Int. J. Mol. Sci. 24, 5100 (2023). https://doi.org/10.3390/ijms24065100

    Article  Google Scholar 

  5. A. G. Akopdzhanov, E. D. Sveshnikova, N. G. Guseynzade, L. V. Kolik, E. M. Konchekov, and N. L. Shimanovskiy, Pharm. Chem. J. 55, 11 (2021). https://doi.org/10.1007/s11094-021-02363-7

    Article  Google Scholar 

  6. E. M. Konchekov, N. G. Gusein-Zade, L. V. Kolik, K. V. Artem’ev, and A. V. Pulish, IOP Conf. Ser.: Mater. Sci. Eng. 848, 012037 (2020). https://doi.org/10.1088/1757-899X/848/1/012037

  7. A. G. Akopdzhanov, N. L. Shimanovskii, D. S. Stepanova, T. A. Fedotcheva, A. V. Pulish, N. G. Guseinzade, L. V. Kolik, and E. M. Konchekov, Biophysics 64, 926 (2019). https://doi.org/10.1134/S0006350919060034

    Article  Google Scholar 

  8. A. Kuzin, A. Solovchenko, D. Khort, R. Filippov, V. Lukanin, N. Lukina, M. Astashev, and E. Konchekov, Plants 12, 385 (2023). https://doi.org/10.3390/plants12020385

    Article  Google Scholar 

  9. M. Kh. Ashurov, E. M. Ashurov, M. E. Astashev, I. V. Baimler, S. V. Gudkov, E. M. Konchekov, V. N. Lednev, N. A. Lukina, T. A. Matveeva, A. G. Markendudis, A. V. Onegov, D. K. Rashidova, R. M. Sarimov, K. F. Sergeichev, S. T. Sharipov, et al., ChemEngineering 6, 91 (2022). https://doi.org/10.3390/chemengineering6060091

    Article  Google Scholar 

  10. E. M. Konchekov, L. V. Kolik, Y. K. Danilejko, S. V. Belov, K. V. Artem’ev, M. E. Astashev, T. I. Pavlik, V. I. Lukanin, A. I. Kutyrev, I. G. Smirnov, and S. V. Gudkov, Plants 11, 1373 (2022). https://doi.org/10.3390/plants11101373

    Article  Google Scholar 

  11. E. M. Konchekov, A. P. Glinushkin, V. P. Kalinitchenko, K. V. Artem’ev, D. E. Burmistrov, V. A. Kozlov, and L. V. Kolik, Front. Phys. 8, (2021). https://doi.org/10.3389/fphy.2020.616385

  12. M. E. Astashev, E. M. Konchekov, L. V. Kolik, and S. V. Gudkov, Sensors 22, 8310 (2022). https://doi.org/10.3390/s22218310

    Article  ADS  Google Scholar 

  13. S. V. Belov, Y. K. Danileiko, A. B. Egorov, V. I. Lukanin, A. A. Semenova, A. B. Lisitsyn, N. M. Revutskaya, V. V. Nasonova, Y. K. Yushina, E. R. Tolordava, N. A. Nasyrov, A. I. Sinichkina, E. M. Konchekov, T. A. Matveeva, and S. V. Gudkov, Processes 10, 1536 (2022). https://doi.org/10.3390/pr10081536

    Article  Google Scholar 

  14. K. Takaki, K. Takahashi, N. Hayashi, D. Wang, and T. Ohshima, Rev. Mod. Plasma Phys. 5, 12 (2021). https://doi.org/10.1007/s41614-021-00059-9

    Article  ADS  Google Scholar 

  15. B. M. Smirnov, N. Y. Babaeva, G. V. Naidis, V. A. Panov, E. E. Son, and D. V. Tereshonok, High Temp. 57, 286 (2019). https://doi.org/10.1134/S0018151X19020202

    Article  Google Scholar 

  16. P. Bruggeman and C. Leys, J. Phys. D: Appl. Phys. 42, 053001 (2009). https://doi.org/10.1088/0022-3727/42/5/053001

  17. S. Samukawa, M. Hori, S. Rauf, K. Tachibana, P. Bruggeman, G. Kroesen, J. C. Whitehead, A. B. Murphy, A. F. Gutso, S. Starikovskaia, U. Kortshagen, J.‑P. Boeuf, T. J. Sommerer, M. J. Kushner, U. Czarnetzki, et al., J. Phys. D: Appl. Phys. 45, 253001 (2012). https://doi.org/10.1088/0022-3727/45/25/253001

  18. Yu. A. Lebedev, Plasma Phys. Rep. 43, 685 (2017). https://doi.org/10.1134/S1063780X17060101

    Article  ADS  Google Scholar 

  19. N. Yu. Babaeva, R. S. Berry, G. V. Najdis, B. M. Smirnov, E. E. Son, and D. V. Tereshonok, High Temp. 54, 745 (2016). https://doi.org/10.1134/S0018151X16050059

    Article  Google Scholar 

  20. Yu. S. Akishev, M. E. Grushin, V. B. Karal’nik, A. E. Monich, M. V. Pan’kin, N. I. Trushkin, V. P. Kholodenko, V. A. Chugunov, N. A. Zhirkova, I. A. Irkhina, and E. N. Kobzev, Plasma Phys. Rep. 32, 1052 (2006). https://doi.org/10.1134/S1063780X06120087

    Article  ADS  Google Scholar 

  21. Yu. S. Akishev, M. Grushin, V. Karal’nik, N. Trushkin, V. Kholodenko, V. Chugunov, E. Kobzev, N. Zhirkova, I. Irkhina, and G. Kireev, Pure Appl. Chem. 80, 1953 (2008). https://doi.org/10.1351/pac200880091953

    Article  Google Scholar 

  22. A. M. Anpilov, E. M. Barkhudarov, N. K. Berezhetskaya, S. I. Gritsinin, A. M. Davydov, Yu. N. Kozlov, I. A. Kossyi, M. A. Misakyan, S. M. Temchin, V. G. Ral’chenko, P. A. Gushchin, and E. V. Ivanov, Tech. Phys. 56, 1588 (2011). https://doi.org/10.1134/S1063784211110028

    Article  Google Scholar 

  23. E. M. Barkhudarov, I. A. Kossyi, Yu. N. Kozlov, S. M. Temchin, M. I. Taktakishvili, and N. Christofi, J. At. Mol. Phys. 2013, 429189 (2013). https://doi.org/10.1155/2013/429189

  24. A. M. Anpilov, E. M. Barkhudarov, Yu. B. Bark, Yu. V. Zadiraka, M. Christofi, Yu. N. Kozlov, I. A. Kossyi, V. A. Kop’ev, V. P. Silakov, M. I. Taktakishvili, and S. M. Temchin, J. Phys. D: Appl. Phys. 34, 993 (2001). https://doi.org/10.1088/0022-3727/34/6/322

    Article  ADS  Google Scholar 

  25. V. A. Panov, L. M. Vasilyak, S. P. Vetchinin, V. Ya. Pecherkin, and A. S. Saveliev, Plasma Phys. Rep. 44, 882 (2018). https://doi.org/10.1134/S1063780X1809009X

    Article  ADS  Google Scholar 

  26. N. Yu. Babaeva and M. J. Kushner, J. Phys. D: Appl. Phys. 42, 132003 (2009). https://doi.org/10.1088/0022-3727/42/13/132003

  27. A. M. Anpilov, E. M. Barkhudarov, A. V. Dvoenko, Yu. N. Kozlov, I. A. Kossyi, I. V. Moryakov, M. I. Taktakishvili, and S. M. Temchin, Usp. Prikl. Fiz. 4, 265 (2016).

    Google Scholar 

  28. G. A. Mesyats, V. V. Osipov, and V. F. Tarasenko, Pulsed Gas Lasers (Nauka, Moscow, 1991; SPIE Press, Washington, 1995).

  29. Yu. D. Korolev and G. A. Mesyats, Physics of Pulsed Gas Breakdown (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  30. T. Iqbal, Vegetos: Int. J. Plant Res. 30, 93 (2017). https://doi.org/10.5958/2229-4473.2017.00042.8

    Article  Google Scholar 

  31. H. Panakkal, I. Gupta, R. Bhagat, and A. P. Ingle, in Nanotechnology in Plant Growth Promotion and Protection (Wiley, New York, 2021), Ch. 13, p. 259. https://doi.org/10.1002/9781119745884.ch13

    Book  Google Scholar 

  32. A. M. Anpilov, E. M. Barkhudarov, I. A. Kossyi, M. A. Misakyan, I. V. Moryakov, M. G. Smirnov, and M. I. Taktikashvili, Tech. Phys. 66, 675 (2021). https://doi.org/10.1134/S1063784221050029

    Article  Google Scholar 

  33. A. M. Anpilov, E. M. Barkhudarov, Yu. N. Kozlov, I. A. Kossyi, M. A. Misakyan, I. V. Moryakov, M. I. Taktikashvili, N. M. Tarasova, and S. M. Temchin, Plasma Phys. Rep. 45, 246 (2019). https://doi.org/10.1134/S1063780X19020016

    Article  ADS  Google Scholar 

  34. A. M. Anpilov, E. M. Barkhudarov, N. G. O. Guseinzade, I. A. Kossyi, M. A. Misakyan, I. V. Moryakov, M. G. Smirnov, M. I. Taktikashvili, and S. M. Temchin, RF Patent No. 201546 U1 (2020).

  35. S. P. Wolff, Methods Enzymol. 233, 182 (1994). https://doi.org/10.1016/S0076-6879(94)33021-2

    Article  Google Scholar 

  36. D. Tsikas, J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 851, 51 (2007). https://doi.org/10.1016/j.jchromb.2006.07.054

    Article  Google Scholar 

  37. R. Shin and D. P. Schachtman, Proc. Natl. Acad. Sci. U. S. A. 101, 8827 (2004). https://doi.org/10.1073/pnas.0401707101

    Article  ADS  Google Scholar 

  38. S. V. Belov, Y. K. Danyleiko, A. P. Glinushkin, V. P. Kalinitchenko, A. V. Egorov, V. A. Sidorov, E. M. Konchekov, S. V. Gudkov, A. S. Dorokhov, Y. P. Lobachevsky, and A. Yu. Izmailov, Front. Phys. 8, 618320 (2021). https://doi.org/10.3389/fphy.2020.618320

  39. B.-M. Chen, Z.-H. Wang, S.-X. Li, G.-X. Wang, H.‑X. Song, and X.-N. Wang, Plant Sci. 167, 635 (2004). https://doi.org/10.1016/j.plantsci.2004.05.015

    Article  Google Scholar 

  40. I. A. Kossyi, A. Y. Kostynsky, A. A. Matveyev, and V. P. Silakov, Plasma Sources Sci. Technol. 1, 207 (1992). https://doi.org/10.1088/0963-0252/1/3/011

    Article  ADS  Google Scholar 

  41. V. A. Shakhatov, S. I. Gritsinin, and V. D. Borzosekov, Plasma Phys. Rep. 47, 465 (2021). https://doi.org/10.1134/S1063780X21050081

    Article  ADS  Google Scholar 

  42. K. V. Artem’ev, G. M. Batanov, N. K. Berezhetskaya, V. D. Borzosekov, S. I. Gritsinin, A. M. Davydov, L. V. Kolik, E. M. Konchekov, I. A. Kossyi, Y. A. Lebedev, I. V. Moryakov, A. E. Petrov, K. A. Sarksyan, V. D. Stepakhin, N. K. Kharchev, et al., Plasma Phys. Rep. 46, 311 (2020). https://doi.org/10.1134/S1063780X20030010

    Article  ADS  Google Scholar 

  43. A. Ahmad, S. Hashmi, J. Palma, and F. Corpa, Chemosphere 290, 133329 (2022). https://doi.org/10.1016/j.chemosphere.2021.133329

  44. T. Adhikari, S. Kundu, and A. S. Rao, Int. J. Agric. Food Sci. Technol. 4, 809 (2013).

    Google Scholar 

  45. V. Shah and I. Belozerova, Water, Air, Soil Pollut. 197, 143 (2009). https://doi.org/10.1007/s11270-008-9797-6

    Article  ADS  Google Scholar 

  46. S. A. Sajib, M. Billah, S. Mahmud, M. Miah, F. Hossain, F. B. Omar, N. C. Roy, K. M. F. Hoque, M. R. Talukder, A. H. Kabir, and M. A. Reza, Plasma Chem. Plasma Process. 40, 119 (2020). https://doi.org/10.1007/s11090-019-10028-3

    Article  Google Scholar 

  47. T. Sarinont, R. Katayama, Y. Wada, K. Koga, and M. Shiratani, MRS Adv. 2, 995 (2017). https://doi.org/10.1557/adv.2017.178

    Article  Google Scholar 

  48. P. Attri, K. Ishikawa, T. Okumura, K. Koga, and M. Shiratani, Processes 8, 1002 (2020). https://doi.org/10.3390/pr8081002

    Article  Google Scholar 

  49. V. M. Shmelev, A.M. Anpilov and E.M. Barkhudarov, Appl. Phys. 5, 55 (2005).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the scientific team of the Department of Plasma Physics of the Prokhorov General Physics Institute of the Russian Academy of Sciences: V.D. Borzosekov, N.K. Berezhetskaya, and employee of the Center for Biophotonics of the Prokhorov General Physics Institute of the Russian Academy of Sciences E.M. Konchekov for recommendations in preparing the experiment and fruitful discussion of the results.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Razvolyaeva.

Ethics declarations

The authors declare that they have no conflicts of int-erest.

Additional information

Translated by L. Mosina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gudkova, V.V., Razvolyaeva, D.A., Moryakov, I.V. et al. Activation of Aqueous Solutions Using a Multi-Spark Ring Discharge with Gas Injection in the Discharge Gap. Plasma Phys. Rep. 49, 1341–1349 (2023). https://doi.org/10.1134/S1063780X23601037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X23601037

Keywords:

Navigation