Skip to main content
Log in

Saturating Magnetic Field of Weibel Instability in Plasmas with Bi-Maxwellian and Bikappa Particle Distributions

  • PLASMA INSTABILITIES
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A two-dimensional quasilinear theory of saturation of the transverse magnetic Weibel instability in a collisionless plasma is developed. A closed system of equations is obtained to describe the evolution of the interacting spatial harmonics of the particle distribution function perturbations and magnetic field when the plasma anisotropy axis and wave vectors of the harmonics, as well as the electric field vectors in them, lie in the same calculation plane. Based on the numerical solution of this system, the dependence of the mean-square average of the saturating magnetic field on the initial anisotropies of the bi-Maxwellian and various bikappa velocity distributions of particles is found. It is shown that the magnitude of the saturating field substantially depends on the kappa parameter of the product bikappa particle distribution, i.e., on its energy profile, when the anisotropy parameters are small compared to unity. The results are compared with the published results of calculation by the less efficient particle-in-cell method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. B. Mikhailovskii, Theory of Plasma Instabilities (Atomizdat, Moscow, 1971; Consultants Bureau, New York, 1974).

  2. N. A. Krall and A. W. Trivelpiece, Principles of Plasma Physics (Academic, New York, 1973).

    Book  Google Scholar 

  3. W. Baumjohann and R. A. Treumann, Basic Space Plasma Physics (Imperial College Press, London, 2012).

    Book  MATH  Google Scholar 

  4. R. A. Treumann, Astron. Astrophys. Rev. 17, 409 (2009). https://doi.org/10.1007/s00159-009-0024-2

    Article  ADS  Google Scholar 

  5. A. Marcowith, A. Bret, A. Bykov, M. E. Dieckman, L. O’C Drury, B. Lembège, M. Lemoine, G. Morlino, G. Murphy, G. Pelletier, I. Plotnikov, B. Reville, M. Riquelme, L. Sironi, and A. Stockem Novo, Rep. Prog. Phys. 79, 046901 (2016). https://doi.org/10.1088/0034-4885/79/4/046901

  6. S. P. Gary, Theory of Space Plasma Microinstabilities (Cambridge Univ. Press, Cambridge 1993). https://doi.org/10.1017/cbo9780511551512

    Book  Google Scholar 

  7. E. S. Weibel, Phys. Rev. Lett. 2, 83 (1959). https://doi.org/10.1103/physrevlett.2.83

    Article  ADS  Google Scholar 

  8. M. Zhou, V. Zhdankin, M. W. Kunz, N. F. Loureiro, and D. A. Uzdensky, Proc. Natl. Acad. Sci. 119, e2119831119 (2022). https://doi.org/10.1073/pnas.2119831119

  9. B. D. Fried, Phys. Fluids 2, 337 (1959). https://doi.org/10.1063/1.1705933

    Article  ADS  Google Scholar 

  10. G. Kalman, C. Montes, and D. Quemada, Phys. Fluids 11, 1797 (1968). https://doi.org/10.1063/1.1692198

    Article  ADS  Google Scholar 

  11. R. L. Morse and C. W. Nielson, Phys. Fluids 14, 830 (1971). https://doi.org/10.1063/1.1693518

    Article  ADS  Google Scholar 

  12. V. V. Kocharovskii, V. V. Kocharovskii, V. Yu. Mart’yanov, and S. V. Tarasov, Phys.–Usp. 59, 1165 (2016). https://doi.org/10.3367/UFNe.2016.08.037893

    Article  Google Scholar 

  13. M. Lazar, R. Schlickeiser, and P. K. Shukla, Phys. Plasmas 13, 102107 (2006). https://doi.org/10.1063/1.2357047

  14. A. Stockem, M. E. Dieckmann, and R. Schlickeiser, Plasma Phys. Control. Fusion 51, 075014 (2009). https://doi.org/10.1088/0741-3335/51/7/075014

  15. U. Schaefer-Rolffs, I. Lerche, and R. Schlickeiser, Phys. Plasmas 13, 012107 (2006). https://doi.org/10.1063/1.2164812

  16. D. S. Lemons, D. Winske, and S. P. Gary, J. Plasma Phys. 21, 287 (1979). https://doi.org/10.1017/S0022377800021851

    Article  ADS  Google Scholar 

  17. T. N. Kato, Phys. Plasmas 12, 080705 (2005). https://doi.org/10.1063/1.2017942

  18. L. V. Borodachev and D. O. Kolomiets, J. Plasma Phys. 77, 277 (2010). https://doi.org/10.1017/s0022377810000188

    Article  ADS  Google Scholar 

  19. R. C. Davidson, D. A. Hammer, I. Haber, and C. E. Wagner, Phys. Fluids 15, 317 (1972). https://doi.org/10.1063/1.1693910

    Article  ADS  Google Scholar 

  20. C. Ruyer, L. Gremillet, A. Debayle, and G. Bonnaud, Phys. Plasmas 22, 032102 (2015). https://doi.org/10.1063/1.4913651

  21. M. Lazar, R. López, S. M. Shaaban, S. Poedts, P. H. Yoon, and H. Fichtner, Front. Astron. Space Sci. 8, 777559 (2022). https://doi.org/10.3389/fspas.2021.777559

  22. M. Lazar, R. Schlickeiser, and S. Poedts, Phys. Plasmas 17, 062112 (2010). https://doi.org/10.1063/1.3446827

  23. T. Silva, B. Afeyan, and L. O. Silva, Phys. Rev. E 104, 035201 (2021). https://doi.org/10.1103/physreve.104.035201

  24. V. M. Vasyliunas, J. Geophys. Res. 73, 2839 (1968).https://doi.org/10.1029/JA073i009p02839

    Article  ADS  Google Scholar 

  25. G. Livadiotis, Kappa Distributions: Theory and Applications in Plasmas (Elsevier Science, Amsterdam, 2017).

    Book  MATH  Google Scholar 

  26. G. Livadiotis, G. Nicolaou, and F. Allegrini, Astrophys. J., Suppl. Ser. 253, 16 (2021). https://doi.org/10.3847/1538-4365/abd4ed

    Article  ADS  Google Scholar 

  27. V. Pierrard and M. Lazar, Sol. Phys. 267, 153 (2010). https://doi.org/10.1007/s11207-010-9640-2

    Article  ADS  Google Scholar 

  28. K. Y. Vagin and S. A. Uryupin, Plasma Phys. Rep. 40, 393 (2014). https://doi.org/10.1134/s1063780x14040096

    Article  ADS  Google Scholar 

  29. L. V. Borodachev, M. A. Garasev, D. O. Kolomiets, V. V. Kocharovskii, V. Yu. Mart’yanov, and A. A. Nechaev, Radiophys. Quantum Electron. 59, 991 (2016). https://doi.org/10.1007/s11141-017-9768-0

    Article  ADS  Google Scholar 

  30. M. E. Dieckmann, Plasma Phys. Control. Fusion 51, 124042 (2009). https://doi.org/10.1088/0741-3335/51/12/124042

  31. D. V. Romanov, V. Y. Bychenkov, W. Rozmus, C. E. Capjack, and R. Fedosejevs, Phys. Rev. Lett. 93, 215004 (2004). https://doi.org/10.1103/physrevlett.93.215004

  32. C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation (CRC Press, Boca Raton, FL, 1991). https://doi.org/10.1201/9781315275048

    Book  Google Scholar 

  33. T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, Plasma Phys. Control. Fusion 57, 113001 (2015). https://doi.org/10.1088/0741-3335/57/11/113001

  34. A. A. Nechaev, M. A. Garasev, V. V. Kocharovskii, and V. V. Kocharovskii, Radiophys. Quantum Electron. 62, 830 (2020).

    Article  ADS  Google Scholar 

  35. M. A. Garasev, A. A. Nechaev, A. N. Stepanov, V. V. Kocharovsky, and V. V. Kocharovsky, J. Plasma Phys. 88, 175880301 (2022). https://doi.org/10.1017/S0022377822000423

  36. A. Stockem, M. E. Dieckmann, and R. Schlickeiser, Plasma Phys. Control. Fusion 52, 085009 (2010). https://doi.org/10.1088/0741-3335/52/8/085009

  37. J. Seough, P. H. Yoon, and J. Hwang, Phys. Plasmas 22, 012303 (2015). https://doi.org/10.1063/1.4905230

  38. O. A. Pokhotelov and O. A. Amariutei, Ann. Geophys. 29, 1997 (2011). https://doi.org/10.5194/angeo-29-1997-2011

    Article  ADS  Google Scholar 

  39. P. H. Yoon, J. J. Seough, K. H. Kim, and D. H. Lee, J. Plasma Phys. 78, 47 (2011). https://doi.org/10.1017/s0022377811000407

    Article  ADS  Google Scholar 

  40. N. Rubab, A. C.-L. Chian, and V. Jatenco-Pereira, J. Geophys. Res.: Space Phys. 121, 1874 (2016). https://doi.org/10.1002/2015ja022206

    Article  ADS  Google Scholar 

  41. S. Zaheer and G. Murtaza, Phys. Plasmas 14, 022108 (2007). https://doi.org/10.1063/1.2536159

  42. C. Thaury, P. Mora, A. Héron, J. C. Adam, and T. M. Antonsen, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 82, 026408 (2010). https://doi.org/10.1103/physreve.82.026408

  43. T. Silva, K. Schoeffler, J. Vieira, M. Hoshino, R. A. Fonseca, and L. O. Silva, Phys. Rev. Res. 2, 023080 (2020). https://doi.org/10.1103/physrevresearch.2.023080

  44. N. Shukla, K. Schoeffler, E. Boella, J. Vieira, R. Fonseca, and L. O. Silva, Phys. Rev. Res. 2, 023129 (2020). https://doi.org/10.1103/physrevresearch.2.023129

  45. C. Zhang, J. Hua, Y. Wu, Y. Fang, Y. Ma, T. Zhang, S. Liu, B. Peng, Y. He, C.-K. Huang, K. A. Marsh, W. B. Mori, W. Lu, and C. Joshi, Phys. Rev. Lett. 125, 255001 (2020). https://doi.org/10.1103/physrevlett.125.255001

  46. J. Dudík, E. Dzifčáková, N. Meyer-Vernet, G. D. Zanna, P. R. Young, A. Giunta, B. Sylwester, J. Sylwester, M. Oka, H. E. Mason, C. Vocks, L. Matteini, S. Krucker, D. R. Williams, and Š. Mackovjak, Sol. Phys. 292, 100 (2017). https://doi.org/10.1007/s11207-017-1125-0

    Article  ADS  Google Scholar 

  47. E. Marsch, Living Rev. Sol. Phys. 3, 1 (2006). https://doi.org/10.12942/lrsp-2006-1

    Article  ADS  Google Scholar 

  48. P. H. Yoon, Rev. Mod. Plasma Phys. 1, 4 (2017). https://doi.org/10.1007/s41614-017-0006-1

    Article  ADS  Google Scholar 

  49. M. M. Echim, J. Lemaire, and Ø. Lie-Svendsen, Surv. Geophys. 32, 1 (2010). https://doi.org/10.1007/s10712-010-9106-y

    Article  ADS  Google Scholar 

  50. M. Maksimovic, I. Zouganelis, J.-Y. Chaufray, K. Issautier, E. E. Scime, J. E. Littleton, E. Marsch, D. J. McComas, C. Salem, R. P. Lin, and H. Elliott, J. Geophys. Res.: Space Phys. 110, A09104 (2005). https://doi.org/10.1029/2005ja011119

  51. S. M. Shaaban, M. Lazar, R. F. Wimmer-Schweingruber, and H. Fichtner, Astrophys. J. 918, 37 (2021). https://doi.org/10.3847/1538-4357/ac0f01

    Article  ADS  Google Scholar 

  52. S. M. Shaaban, M. Lazar, R. A. López, H. Fichtner, and S. Poedts, Mon. Not. R. Astron. Soc. 483, 5642 (2019). https://doi.org/10.1093/mnras/sty3377

    Article  ADS  Google Scholar 

  53. M. E. Dieckmann, D. Folini, A. Bret, and R. Walder, Plasma Phys. Control. Fusion 61, 085027 (2019). https://doi.org/10.1088/1361-6587/ab2b2d

  54. A. Stockem Novo, P. H. Yoon, M. Lazar, R. Schlickeiser, S. Poedts, and J. Seough, Phys. Plasmas 22, 092301 (2015). https://doi.org/10.1063/1.4929852

Download references

ACKNOWLEDGMENTS

Numerical calculations were performed using the supercomputer resources of the Center for Collective Use of the Keldysh Institute of Applied Mathematics, Russian Academy of Sciences.

Funding

This study was supported by the Russian Science Foundation (grant no. 19-72-10111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kuznetsov.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, A.A., Kocharovskii, V.V., Kocharovskii, V.V. et al. Saturating Magnetic Field of Weibel Instability in Plasmas with Bi-Maxwellian and Bikappa Particle Distributions. Plasma Phys. Rep. 48, 973–982 (2022). https://doi.org/10.1134/S1063780X22600700

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X22600700

Keywords:

Navigation