Skip to main content
Log in

Development of the Diagnostic System “Active Spectroscopy” (CXRS) for the TRT Facility

  • TOKAMAKS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

TRT (Tokamak with Reactor Technologies) is the next major step in Russia’s National Controlled Fusion Program. The TRT facility is designed to develop technologies for providing a long operating pulse that is possible using high-temperature superconductivity. To control the operation of the TRT facility and control the parameters of thermonuclear plasma, it is necessary to develop and create a whole complex of diagnostic systems. One of the planned diagnostic systems for TRT is the “Active spectroscopy” diagnostic abbreviated in literature as CXRS. The development of this diagnostic is possible using either the heating or the diagnostic neutral beams. Its tasks include measuring the most important plasma parameters such as ion temperature, plasma rotation velocity, and the concentration of light impurities along the entire radius of the plasma column. This work presents the development of the Active Spectroscopy diagnostic system for the TRT facility. The levels of the active and background signals, as well as the signal-to-noise ratio are estimated. The simulation results for the spectral profiles of plasma radiation are presented. Based on the simulation results, a measurement scheme is proposed that takes into account the need for simultaneous measurements for the different spatial points. A description of the proposed light collection system from the plasma is given, as well as a description of the proposed measuring equipment. The accuracy of measuring individual plasma parameters and the achievable spatial resolution are estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. A. V. Krasilnikov, S. V. Konovalov, E. N. Bondarchuk, I. V. Mazul, I. Yu. Rodin, A. B. Mineev, E. G. Kuz’min, A. A. Kavin, D. A. Karpov, V. M. Leonov, R. R. Khayrutdinov, A. S. Kukushkin, D. V. Portnov, A. A. Ivanov, Yu. I. Belchenko, et al., Plasma Phys. Rep. 47, 1092 (2021). https://doi.org/10.1134/S1063780X21110192

    Article  ADS  Google Scholar 

  2. A. N. Zinov’ev and V. V. Afrosimov, in Plasma Diagnostics, Ed. by M. I. Pergament (Energoizdat, Moscow, 1990), Vol. 7, p. 56 [in Russian].

    Google Scholar 

  3. R. C. Isler, Plasma Phys. Control. Fusion 36, 171 (1994). https://doi.org/10.1088/0741‑3335/36/2/001

    Article  ADS  Google Scholar 

  4. S. V. Serov, S. N. Tugarinov, and M. G. von Hellermann, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint. 41 (2), 89 (2018). https://doi.org/10.21517/0202-3822-2018-41-2-89-94

    Article  Google Scholar 

  5. S. V. Serov, M. De Bock, M. G. von Hellermann, and S. N. Tugarinov, Rev. Sci. Instrum. 92, 053517 (2021). https://doi.org/10.1063/5.0042029

  6. S. N. Tugarinov, A. A. Belokopytov, D. M. Kulakov, A. V. Lukin, N. N. Naumenko, F. A. Sattarov, V. V. Serov, M. A. Usoltseva, F. O. Khabanov, N. M. Shigapova, and V. P. Yartsev, Instrum. Exp. Tech. 59, 104 (2016). https://doi.org/10.1134/S0020441216010152

    Article  Google Scholar 

  7. V. M. Leonov, S. V. Konovalov, V. E. Zhogolev, A. A. Kavin, A. V. Krasilnikov, A. Yu. Kuyanov, V. E. Lukash, A. B. Mineev, and R. R. Khayrutdinov, Plasma Phys. Rep. 47, 1107 (2021). https://doi.org/10.1134/S1063780X21120047

    Article  ADS  Google Scholar 

  8. Yu. I. Belchenko, A. V. Burdakov, V. I. Davydenko, A. I. Gorbovskii, I. S. Emelev, A. A. Ivanov, A. L. Sanin, and O. Z. Sotnikov, Plasma Phys. Rep. 47, 1151 (2021). https://doi.org/10.1134/S1063780X21110131

    Article  ADS  Google Scholar 

  9. V. I. Davydenko, A. A. Ivanov, and N. V. Stupishin, Plasma Phys. Rep. 48, 838 (2022).

  10. M. von Hellermann, M. de Bock, O. Marchuk, D. Reiter, S. Serov, and M. Walsh, Atoms 7, 30 (2019). https://doi.org/10.3390/atoms7010030

    Article  ADS  Google Scholar 

  11. H. P. Summers, The ADAS User Manual. http://www.adas.ac.uk/. Cited April 2, 2022.

  12. S. V. Serov, S. N. Tugarinov, and M. von Hellermann, The 3rd European Conference on Plasma Diagnostics, Lisbon, 2019, Book of Abstracts, Paper P1. 17. https://www.ipfn.tecnico.ulisboa.pt/ECPD2019/pdf/ecpd2019_book_of_abstracts.pdf.

  13. R. J. E. Jaspers, M. G. von Hellermann, E. Delabie, W. Biel, O. Marchuk, and L. Yao, Rev. Sci. Instrum. 79, 10F526 (2008). https://doi.org/10.1063/1.2979874

  14. J. Huang, W. W. Heidbrink, M. G. von Hellermann, L. Stagner, C. R. Wu, Y. M. Hou, J. F. Chang, S. Y. Ding, Y. J. Chen, Y. B. Zhu, Z. Jin, Z. Xu, W. Gao, J. F. Wang, B. Lyu, et al., Rev. Sci. Instrum. 87, 11E542 (2016). https://doi.org/10.1063/1.4960308

  15. M. von Hellermann, P. Breger, J. Frieling, R. Konig, W. Mandl, A. Maas, and H. P. Summers, Plasma Phys. Control. Fusion 37, 71 (1995). https://doi.org/10.1088/0741-3335/37/2/002

    Article  ADS  Google Scholar 

  16. G. S. Pavlova, S. V. Serov, S. N. Tugarinov, and M. von Hellerman, J. Phys.: Conf. Ser. 2055, 012002 (2021). https://doi.org/10.1088/1742-6596/2055/1/012002

  17. P. A. Sdvizhenskii, M. G. Levashova, A. B. Kukushkin, V. S. Lisitsa, V. S. Neverov, Yu. A. Romazanov, S. V. Serov, I. Yu. Tolstikhina, and S. N. Tugarinov, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint. 43 (4), 27 (2020). .https://doi.org/10.21517/0202-3822-2020-43-4-27-38

    Article  Google Scholar 

  18. M. Tunklev, P. Breger, K. Günther, M. von Hellermann, R. König, M. O’Mullane, and K.-D. Zastrow, Plasma Phys. Control. Fusion 41, 985 (1999). https://doi.org/10.1088/0741-3335/41/8/305

    Article  ADS  Google Scholar 

  19. E. Viezzer, T. Putterich, R. Dux, A. Kallenbach, and the ASDEX Upgrade Team, Plasma Phys. Control. Fusion 53, 035002 (2011). https://doi.org/10.1088/0741-3335/53/3/035002

  20. S. Kajita, M. De Bock, M. von Hellermann, A. Kukushkin, and R. Barnsley, Plasma Phys. Control. Fusion 57, 045009 (2015). https://doi.org/10.1088/0741-3335/57/4/045009

  21. M. G. von Hellermann, W. G. F. Core, A. Howman, C. Jupen, R. W. T. Konig, M. F. Stamp, H. P. Summers, P. R. Thomas, and K.-D. Zastrow, in Diagnostics for Experimental Thermonuclear Fusion Reactors, Ed. by P. E. Stott, G. Gorini, and E. Sindoni (Plenum, New York, 1996), p. 321.

    Google Scholar 

  22. Zemax Company. www.zemax.com. Cited April 2, 2022.

Download references

Funding

The work was supported by the contract dated July 23, 2021 No. 17706413348210001780/226/3538-D for the performance of the research and development work on the topic: “Development and justification of technical requirements for the main engineering and technical systems of the tokamak with reactor technologies (TRT) in provision of preliminary design” in pursuance of the state contract no. 17706413348210001780.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Serov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serov, S.V., Tugarinov, S.N., Serov, V.V. et al. Development of the Diagnostic System “Active Spectroscopy” (CXRS) for the TRT Facility. Plasma Phys. Rep. 48, 844–854 (2022). https://doi.org/10.1134/S1063780X22600542

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X22600542

Keywords:

Navigation