Skip to main content
Log in

Conceptual Design of Diagnostic Hydrogen Beam Injector for TRT Tokamak

  • TOKAMAKS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A conceptual design of a charge-exchange hydrogen atomic beam diagnostic injector for the TRT tokamak is presented. The injector is supposed to be used to measure the plasma parameters in the tokamak by active spectroscopy methods. In an ion source of the diagnostic injector, a ballistically focused ion beam is formed by a precision multi-aperture ion–optical system with four spherical electrodes. The plasma emitter is created by the hydrogen plasma from an arc generator or from a generator with an inductive RF discharge, expanding into a volume with a peripheral multipole magnetic field. The equivalent current of a beam of hydrogen atoms with an energy of 60 keV injected into the TRT plasma is ~4.5 A. At an angular beam divergence of ~7 mrad and a distance of ~9 m from the ion source to the center of the tokamak plasma, the diameter of the diagnostic beam in the measurement zone is ~13 cm at the level of 1/e. During the operating pulse of the TRT tokamak, several modulated pulses of the diagnostic beam of hydrogen atoms can be injected with a duration of ~1 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. V. Krasilnikov, S. V. Konovalov, E. N. Bondarchuk, I. V. Mazul, I. Yu. Rodin, A. B. Mineev, E. G. Kuz’min, A. A. Kavin, D. A. Karpov, V. M. Leonov, R. R. Khayrutdinov, A. S. Kukushkin, D. V. Portnov, A. A. Ivanov, Yu. I. Belchenko, et al., Plasma Phys. Rep. 47, 1092 (2021). https://doi.org/10.1134/S1063780X21110192

    Article  ADS  Google Scholar 

  2. Yu. I. Belchenko, V. I. Davydenko, P. P. Deichuli, I. S. Emelev, A. A. Ivanov, V. V. Kolmogorov, S. G. Konstantinov, A. A. Krasnov, S. S. Popov, A. L. Sanin, A. V. Sorokin, N. V. Stupishin, I. V. Shikhovtsev, A. V. Kolmogorov, M. G. Atlukhanov, et al., Phys.–Usp. 61, 531 (2018). https://doi.org/10.3367/UFNe.2018.02.038305

    Article  Google Scholar 

  3. V. I. Davydenko and A. A. Ivanov, Rev. Sci. Instrum. 75, 1809 (2004). https://doi.org/10.1063/1.1699461

    Article  ADS  Google Scholar 

  4. V. Davydenko, P. Deichuli, A. Ivanov, N. Stupishin, V. Kapitonov, A. Kolmogorov, I. Ivanov, A. Sorokin, and I. Shikhovtsev, AIP Conf. Proc. 1771, 030025 (2016). https://doi.org/10.1063/1.4964181

  5. N. V. Stupishin, P. P. Deichuli, A. A. Ivanov, A. G. Abdrashitov, G. F. Abdrashitov, V. V. Rashenko, P. V. Zubarev, A. I. Gorbovsky, V. V. Mishagin, V. A. Kapitonov, V. A. Krupin, and G. N. Tilinin, AIP Conf. Proc. 1771, 050012 (2016). https://doi.org/10.1063/1.4964206

  6. S. V. Serov, S. N. Tugarinov, V. V. Serov, V. A. Krupin, I. A. Zemtsov, A. V. Krasil’nikov, N. V. Kuz’min, G. S. Pavlova, and N. N. Naumenko, Plasma Phys. Rep. 48, 844 (2022).

  7. A. C. Riviere and J. Sheffield, Nucl. Fusion 15, 944 (1975). https://doi.org/10.1088/0029-5515/15/5/024

    Article  Google Scholar 

  8. A. Listopad, J. Coenen, V. Davydenko, A. Ivanov, V. Mishagin, V. Savkin, B. Schweer, G. Shul’zhenko, and R. Uhlemann, Rev. Sci. Instrum. 83, 02B707 (2012). https://doi.org/10.1063/1.3669794

  9. I. V. Shikhovtsev, I. I. Averbukh, A. A. Ivanov, V. V. Mishagin, and A. A. Podyminogin, Fusion Eng. Des. 82, 1282 (2007). https://doi.org/10.1016/j.fusengdes.2007.04.048

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.V. Brul for performing simulations of the cell of the ion–optical system and to S.N. Tugarinov for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Davydenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davydenko, V.I., Ivanov, A.A. & Stupishin, N.V. Conceptual Design of Diagnostic Hydrogen Beam Injector for TRT Tokamak. Plasma Phys. Rep. 48, 838–843 (2022). https://doi.org/10.1134/S1063780X22600529

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X22600529

Keywords:

Navigation