Skip to main content
Log in

Profile of an Ion–Acoustic Solitary Wave in Plasma with Negative Ions

  • NONLINEAR STRUCTURES
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A method for numerical calculation of the profile of an ion–acoustic solitary wave in plasma with negative ions and, as a particular case, in electron–ion plasma is presented. New expressions analytically describing the profile of a low-amplitude compression solitary wave and that of a low-amplitude rarefaction solitary wave are derived. Profiles of solitary waves calculated using well-known expressions and expressions proposed in the present work are compared with each other and with corresponding profiles obtained by solving a complete system of equations describing the plasma. In a majority of cases, profiles calculated using the proposed expressions have the smallest deviation from the solution to the complete system of equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

Notes

  1. The value of unperturbed density of negative ions equal to \(n_{{j0}}^{*}\) is frequently referred to as the critical density in the literature. At the same time, we mentioned above that extreme possible values of amplitudes of solitary waves are commonly referred to as critical values starting from the work by Sagdeev [3]. To avoid any confusion, in the present work, we do not refer to density \(n_{{j0}}^{*}\) as critical.

  2. Note that, despite the fact that the curves may be very close to each other, the deviation between them should be estimated along the vertical axis, i.e., as a difference between the values of potential at one and the same value of z.

REFERENCES

  1. N. J. Zabusky and M. D. Kruskal, Phys. Rev. Lett. 15, 240 (1965).

    Article  ADS  Google Scholar 

  2. A. A. Vedenov, E. P. Velikhov, and R. Z. Sagdeev, Nuclear Fusion 1, 82 (1961).

    Article  Google Scholar 

  3. R. Z. Sagdeev, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1966), Vol. 4, p. 23.

    Google Scholar 

  4. H. Washimi and T. Taniuti, Phys. Rev. Lett. 17, 996 (1966).

    Article  ADS  Google Scholar 

  5. Yu. A. Berezin and V. I. Karpman, Sov. Phys.–JETP 24, 1049 (1967).

    ADS  Google Scholar 

  6. D. Biskamp and D. Parkinson, Phys. Fluids 13, 2295 (1970).

    Article  ADS  Google Scholar 

  7. H. Schamel, Plasma Phys. 14, 905 (1972).

    Article  ADS  Google Scholar 

  8. F. Tappert, Phys. Fluids 15, 2446 (1972).

    Article  ADS  Google Scholar 

  9. P. H. Sakanaka, Phys. Fluids 15, 304 (1972).

    Article  ADS  Google Scholar 

  10. S. G. Tagare, Plasma Phys. 15, 1247 (1973).

    Article  ADS  Google Scholar 

  11. Y. S. Satya and B. N. Goswami, Phys. Lett. A 61, 388 (1977).

    Article  ADS  Google Scholar 

  12. H. K. Malik, S. Singh, and R. P. Dahiya, Phys. Plasmas 1, 1137 (1994).

    Article  ADS  Google Scholar 

  13. S. G. Tagare, Phys. Plasmas 7, 883 (2000).

    Article  ADS  Google Scholar 

  14. J. F. McKenzie, Phys. Plasmas 9, 800 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  15. I. D. Dubinova and A. E. Dubinov, Tech. Phys. Lett. 32, 575 (2006).

    Article  ADS  Google Scholar 

  16. U. N. Ghosh, P. Chatterjee, and R. Roychoudhury, Phys. Plasmas 19, 012113 (2012).

  17. A. Kakad, Y. Omura, and B. Kakad, Phys. Plasmas 20, 062103 (2013). https://doi.org/10.1063/1.4810794

  18. B. Kakad, A. Kakad, and Y. Omura, J. Geophys. Res.: Space Phys. 119, 5589 (2014). https://doi.org/10.1002/2014JA019798

    Article  ADS  Google Scholar 

  19. X. Qi, Y.-X. Xu, W.-S. Duan, L.-Y. Zhang, and L. Yang, Phys. Plasmas 21, 082118 (2014). https://doi.org/10.1063/1.4894218

  20. S. A. El-Tantawy, A. M. Wazwaz, and R. Schlickeiser, Plasma Phys. Control. Fusion 57, 125012 (2015).

  21. X. Qi, Y.-X. Xu, X.-Y. Zhao, L.-Y. Zhang, W.-S. Duan, and L. Yang, IEEE Trans. Plasma Sci. 43, 3815 (2015). https://doi.org/10.1109/TPS.2015.2477102

    Article  ADS  Google Scholar 

  22. S. Sharma, S. Sengupta, and A. Sen, Phys. Plasmas 22, 022115 (2015).

  23. S. M. Hosseini Jenab and F. Spanier, Phys. Plasmas 23, 102306 (2016).

  24. S. M. Hosseini Jenab and F. Spanier, Phys. Plasmas 24, 032305 (2017).

  25. H. Ikezi, R. J. Taylor, and D. R. Baker, Phys. Rev. Lett. 25, 11 (1970).

    Article  ADS  Google Scholar 

  26. H. Ikezi, Phys. Fluids 16, 1668 (1973).

    Article  ADS  Google Scholar 

  27. E. Okutsu and Y. Nakamura, Plasma Phys. 21, 1053 (1979).

    Article  ADS  Google Scholar 

  28. T. Pierre, G. Bonhomme, J. R. Cussenot, and G. Leclert, Phys. Lett. A 95, 159 (1983).

    Article  ADS  Google Scholar 

  29. K. E. Lonngren, Plasma Phys. 25, 943 (1983).

    Article  ADS  Google Scholar 

  30. S. Yi, E.-W. Bai, and K. E. Lonngren, Phys. Plasmas 4, 2436 (1997).

    Article  ADS  Google Scholar 

  31. G. C. Das and S. G. Tagare, Plasma Phys. 17, 1025 (1975).

    Article  ADS  Google Scholar 

  32. G. C. Das, Plasma Phys. 19, 363 (1977).

    Article  ADS  Google Scholar 

  33. S. Watanabe, J. Phys. Soc. Jpn. 53, 952 (1984).

    ADS  Google Scholar 

  34. S. G. Tagare and R. V. Reddy, Plasma Phys. Control. Fusion 29, 671 (1987).

    Article  ADS  Google Scholar 

  35. H. K. Malik and R. P. Dahiya, Phys. Plasmas 1, 2872 (1994).

    Article  ADS  Google Scholar 

  36. M. K. Mishra and R. S. Chhabra, Phys. Plasmas 3, 4446 (1996).

    Article  ADS  Google Scholar 

  37. F. Verheest, M. A. Hellberg, and W. A. Hereman, Phys. Plasmas 19, 092302 (2012).

  38. A. E. Dubinov and D. Yu. Kolotkov, High Energy Chemistry 46, 349 (2012).

    Article  Google Scholar 

  39. G. O. Ludwig, J. L. Ferreira, and Y. Nakamura, Phys. Rev. Lett. 52, 275 (1984).

    Article  ADS  Google Scholar 

  40. Y. Nakamura and I. Tsukabayashi, Phys. Rev. Lett. 52, 2356 (1984).

    Article  ADS  Google Scholar 

  41. Y. Nakamura, J. L. Ferreira, and G. O. Ludwig, J. Plasma Phys. 33, 237 (1985).

    Article  ADS  Google Scholar 

  42. Y. Nakamura and I. Tsukabayashi, J. Plasma Phys. 34, 401 (1985).

    Article  ADS  Google Scholar 

  43. Y. Nakamura, I. Tsukabayashi, G. O. Ludwig, and J. L. Ferreira, Phys. Lett. A 113, 155 (1985).

    Article  ADS  Google Scholar 

  44. Y. Nakamura, J. Plasma Phys. 38, 461 (1987).

    Article  ADS  Google Scholar 

  45. J. L. Cooney, M. T. Gavin, and K. E. Lonngren, Phys. Fluids B 3, 2758 (1991).

    Article  ADS  Google Scholar 

  46. J. L. Cooney, M. T. Gavin, J. E. Williams, D. W. Aossey, and K. E. Lonngren, Phys. Fluids B 3, 3277 (1991).

    Article  ADS  Google Scholar 

  47. J. L. Cooney, D. W. Aossey, J. E. Williams, and K. E. Lonngren, Phys. Rev. E 47, 564 (1993).

    Article  ADS  Google Scholar 

  48. J. L. Cooney, D. W. Aossey, J. E. Williams, M. T. Gavin, H. S. Kim, Y.-C. Hsu, A. Scheller, and K. E. Lonngren, Plasma Sources Sci. Technol. 2, 73 (1993).

    Article  ADS  Google Scholar 

  49. S. Yi, J. L. Cooney, H.-S. Kim, A. Amin, Y. El-Zein, and K. E. Lonngren, Phys. Plasmas 3, 529 (1996).

    Article  ADS  Google Scholar 

  50. S. Yi and K. E. Lonngren, Phys. Plasmas 4, 2893 (1997).

    Article  ADS  Google Scholar 

  51. W. Oohara, R. Hatakeyama, and S. Ishiguro, Plasma Phys. Control. Fusion 44, 1299 (2002).

    Article  ADS  Google Scholar 

  52. M. Bacal and G. W. Hamilton, Phys. Rev. Lett. 42, 1538 (1979).

    Article  ADS  Google Scholar 

  53. T. Hirata, R. Hatakeyama, T. Mieno, S. Iizuka, and N. Sato, Plasma Sources Sci. Technol. 5, 288 (1996).

    Article  ADS  Google Scholar 

  54. W. W. Byszewski, J. Appl. Phys. 66, 103 (1989).

    Article  ADS  Google Scholar 

  55. Yu. V. Medvedev, J. Phys. Commun. 2, 045001 (2018).

  56. Yu. V. Medvedev, Plasma Phys. Rep. 44, 544 (2018).

    Article  ADS  Google Scholar 

  57. Yu. V. Medvedev, Plasma Phys. Rep. 45, 230 (2019).

    Article  ADS  Google Scholar 

  58. Yu. Medvedev, Eur. Phys. J. D 73, 157 (2019). https://doi.org/10.1140/epjd/e2019-100067-4

    Article  ADS  Google Scholar 

  59. Yu. V. Medvedev, Plasma Phys. Control. Fusion 56, 025005 (2014).

  60. C. R. Johnston and M. Epstein, Phys. Plasmas 7, 906 (2000).

    Article  ADS  Google Scholar 

  61. Yu. Medvedev, Eur. Phys. J. D 75, 6 (2021). https://doi.org/10.1140/epjd/s10053-020-00007-1

    Article  ADS  Google Scholar 

  62. A. V. Gurevich and L. P. Pitaevsky, Prog. Aerosp. Sci. 16, 227 (1975).

    Article  Google Scholar 

  63. Yu. V. Medvedev, Plasma Phys. Rep. 35, 62 (2009).

    Article  ADS  Google Scholar 

  64. Yu. V. Medvedev, Nonlinear Phenomena during Discontinuity Decay in Rarefied Plasma (Fizmatlit, Moscow, 2012) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Medvedev.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medvedev, Y.V. Profile of an Ion–Acoustic Solitary Wave in Plasma with Negative Ions. Plasma Phys. Rep. 48, 474–492 (2022). https://doi.org/10.1134/S1063780X22200053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X22200053

Keywords:

Navigation