Skip to main content
Log in

Interaction of Nonplanar Electron–Acoustic Shock Waves with Superthermal Hot Electrons

  • SPACE PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract—

The head on collision (HoC) of two electron acoustic shock wave in cylindrical/spherical geometries having kappa-distributed hot electrons is investigated. Extended Poincare–Lighthill–Kuo (PLK) method and weighted residual approach was applied for this problem in a fruitful manner to find approximate small-amplitude solutions of the nonplanar system, which are rare in literature. Adopting these methods, it is shown that the dynamics of interaction of shock waves depends significantly on the geometry factor m. The influence of relevant physical parameters such as superthermal distribution of electrons, kinematic viscosity, and density ratio on the phase shifts of the shock structure is examined. The findings suggest that shock interactions are distinct from those of solitons. It is also observed that the dispersion and dissipation of the colliding nonlinear structure have a combined role in the occurrence and modification of trajectory variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. R. L. Tokar and S. P. Gary, Geophys. Res. Lett. 11, 1180 (1984).

    Article  ADS  Google Scholar 

  2. R. Pottelette, R. E. Ergun, R. A. Treumann, M. Berthomier, C. W. Carlson, J. P. McFadden, and I. Roth, Geophys. Res. Lett. 26, 2629 (1999).

    Article  ADS  Google Scholar 

  3. S. V. Singh and G. S. Lakhina, Planet. Space Sci. 49, 107 (2001).

    Article  ADS  Google Scholar 

  4. G. Karlstad, J. Trulsen, and R. J. Armstrong, in Proceedings of the 1984 International Conference on Plasma Physics, Lausanne, 1984, Vol. 2, p. 12.

  5. M. Surrendra and D. B. Graves, Phys. Rev. Lett. 66, 1469 (1991).

    Article  ADS  Google Scholar 

  6. A. A. Mamun and P. K. Shukla, J. Geophys. Res. 107, 1135 (2002).

    Article  Google Scholar 

  7. T. S. Gill, H. Kaur, and N. S. Saini, Chaos, Solitons Fractals 30, 1020 (2006).

    Article  ADS  Google Scholar 

  8. T. S. Gill, H. Kaur, S. Bansal, N. S. Saini, and P. Bala, Eur. Phys. J. D 41, 151 (2007).

    Article  ADS  Google Scholar 

  9. S. Sultana, I. Kourakis, and M. A. Hellberg, Plasma Phys. Control. Fusion 54, 105016 (2012).

  10. S. Devanandhan, S. V. Singh, G. S. Lakhina, and R. Bharuthram, Commun. Nonlinear Sci. Numer. Simul. 22, 1322 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  11. S. Bansal, M. Aggarwal, and T. S. Gill, J. Astrophys. Astron. 39, 27 (2018).

    Article  ADS  Google Scholar 

  12. S. S. Ghosh, A. Sen, and G. S. Lakhina, Nonlinear Processes Geophys. 9, 463 (2002).

    Article  ADS  Google Scholar 

  13. S. S. Ghosh, A. Sen, and G. S. Lakhina, IEEE Trans. Plasma Sci. 32, 1367 (2004).

    Article  ADS  Google Scholar 

  14. A. Sen, S. S. Ghosh, and G. S. Lakhina, Phys. Scr. 2004, 176 (2004).

    Article  Google Scholar 

  15. T. S. Gill, C. Bedi, and A. S. Bains, Phys. Plasmas 16, 032111 (2009).

  16. C. Bedi and T. S. Gill, Phys. Plasmas 19, 062109 (2012).

  17. S. Bansal, M. Aggarwal, and T. S. Gill, Braz. J. Phys. 48, 638 (2018).

    Article  ADS  Google Scholar 

  18. V. M. Vasyliunas, J. Geophys. Res. 73, 2839 (1968).

    Article  ADS  Google Scholar 

  19. G. Gloeckler, J. Geiss, H. Balsiger, P. Bedini, J. C. Cain, J. Fisher, L. A. Fisk, A. B. Galvin, F. Gliem, D. C. Hamilton, J. V. Hollweg, F. M. Ipavich, R. Joos, S. Livi, R. A. Lundgren, et al., Astron. Astrophys., Suppl. Ser. 92, 267 (1992).

    ADS  Google Scholar 

  20. E. E. Antonova and N. O. Ermakova, Adv. Space Res. 42, 987 (2008).

    Article  ADS  Google Scholar 

  21. M. Shahmansouri, Pramana 80, 295 (2013).

    Article  ADS  Google Scholar 

  22. S. Bansal, M. Aggarwal, and T.S. Gill, Eur. Phys. J. D 74, 236 (2020).

    Article  ADS  Google Scholar 

  23. T. S. Gill and S. Bansal, Chaos, Solitons Fractals 147, 110953 (2021).

  24. S. I. Kopnin, D. V. Shokhrin, and S. I. Popel, Plasma Phys. Rep. 48, 141 (2022).

    Article  ADS  Google Scholar 

  25. P. Harvey, C. Durniak, D. Samsonov, and G. Morfill, Phys. Rev. E 81, 057401 (2010).

  26. P. Eslami, M. Mottaghizadeh, and H. R. Pakzad, Astrophys. Space Sci. 338, 271 (2012).

    Article  ADS  Google Scholar 

  27. M. K. Ghorui, P. Chatterjee, and R. Roychoudhury, Indian J. Phys. 87, 77 (2013).

    Article  ADS  Google Scholar 

  28. J. N. Han, J. X. Li, J. X. Gu, Z. H. Han, and Y. G. Nan, Eur. Phys. J. D 68, 340 (2014).

    Article  ADS  Google Scholar 

  29. E. F. El-Shamy and A. M. Al-Asbali, Phys. Plasmas 21, 093701, (2014).

  30. N. S. Saini, K. Singh, and P. Sethi, Laser Part. Beams 667, 6679085 (2021).

  31. H. Demiray and E.R. El-Zaher, Results Phys. 18, 103293 (2020).

  32. S. Bansal, M. Aggarwal, and T.S. Gill, Phys. Plasmas 27, 083704 (2020).

  33. W. Masood and A. Mushtaq, Phys. Plasmas 15, 022306 (2008).

  34. S. K. EL-Labany, E. F. EL-Shamy, and M. G. El-Mahgoub, Astrophys. Space Sci. 339, 195 (2012).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bansal.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

DATA AVAILABILITY STATEMENT

The data that supports the findings of this study is available within the article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, S., Gill, T.S. Interaction of Nonplanar Electron–Acoustic Shock Waves with Superthermal Hot Electrons. Plasma Phys. Rep. 48, 1217–1225 (2022). https://doi.org/10.1134/S1063780X22100117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X22100117

Keywords:

Navigation