Skip to main content
Log in

Increasing the Specific Energy Concentration of High-Current Z-Pinch Plasma by Using Transient Compression Modes

  • PLASMA DYNAMICS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The results of experiments on increasing the specific energy density of high-current Z-pinch plasma by using various compression modes are presented. The experiments were carried out with cascade wire cylindrical loads at the Angara-5-1 facility with a current in the load of up to 4 MA. The experiments used loads both with a reduced inductance at the final stage of pinch compression and loads that make it possible to implement a transient compression mode from a cascade scheme to a composite Z-pinch scheme. When cascade arrays, which have a reduced inductance at the final stage of compression, are compressed, the specific power of soft X-ray emission is higher than 5 TW/cm, which corresponds to the radiation power with a pinch of a standard length of 1.6 cm at the level of 8–9 TW. The specific total X-ray emission yield is about 150 kJ/cm for a total emission yield at a level of 90–95 kJ. The compression dynamics of such a load indicates a significant role of the magnetic field of the current flowing through the inner cascade in the interaction of the cascades. It is shown that in the transient compression mode from a cascade array to a composite Z‑pinch, the outer array of a material with a relatively low atomic number (Al) provides a high kinetic energy flux density, while the inner array of a small diameter made from a material with a high atomic number (W) allows one to increase the radiation power three times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. V. P. Smirnov, Plasma Phys. Control. Fusion 33, 1697 (1991).

    Article  ADS  Google Scholar 

  2. R. E. Olson, G. A. Chandler, M. S. Derzon, D. E. Hebron, J. S. Lash, R. J. Leeper, T. J. Nash, G. E. Rochau, T. W. L. Sanford, N. B. Alexander, and C. R. Gibson, Fusion Sci. Technol. 35, 260 (1999).

    Article  Google Scholar 

  3. F. J. Wessel, B. Etlicher, and P. Choi, Phys. Rev. Lett. 69, 3181 (1992).

    Article  ADS  Google Scholar 

  4. S. V. Zakharov, V. P. Smirnov, V. A. Gasilov, A. Yu. Krukovskii, and K. V. Skorovarov, Preprint No. 4587/6 (Kurchatov Institute of Atomic Energy, Moscow, 1988).

    Google Scholar 

  5. S. V. Zakharov and V. G. Novikov. Preprint No. 061 (Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, Moscow, 2002).

    Google Scholar 

  6. Z. A. Al’bikov, E. P. Velikhov, A. I. Veretennikov, V. A. Glukhikh, E. V. Grabovskii, V. M. Gryaznov, O. A. Gusev, G. N. Zhemchuzhnikov, V. I. Zaitsev, O. A. Zolotovskii, Yu. A. Istomin, O. V. Kozlov, I. S. Krasheninnikov, S. S. Kurochkin, G. M. Latmanizova, et al., At. Energ. 68, 26 (1990).

    Google Scholar 

  7. G. M. Oleinik, Instrum. Exp. Tech. 43, 328 (2000).

    Article  Google Scholar 

  8. G. S. Volkov, E. V. Grabovskii, V. I. Zaitsev, G. G. Zukakishvili, M. V. Zurin, K. N. Mitrofanov, S. L. Nedoseev, G. M. Oleinik, I. Yu. Porofeev, V. P. Smirnov, and I. N. Frolov, Instrum. Exp. Tech. 47, 201 (2004).

    Article  Google Scholar 

  9. A. V. Branitskii and G. M. Oleinik, Instrum. Exp. Tech. 43, 486 (2000).

    Article  Google Scholar 

  10. G. S. Volkov, V. I. Zaitsev, E. V. Grabovskii, M. V. Fedulov, V. V. Aleksandrov, and N. I. Lakhtyushko, Plasma Phys. Rep. 36, 191 (2010).

    Article  ADS  Google Scholar 

  11. Ning Cheng, Ding Ning, Liu Quan, Yang Zhen-Hua, Fan Wen-Bin, and Zhang Yang, Chin. Phys. Lett. 23, 1857 (2006).

    Article  ADS  Google Scholar 

  12. S. V. Lebedev, R. Aliaga-Rossel, S. N. Bland, J. P. Chittenden, A. E. Dangor and M. G. Haines, Phys. Rev. Lett. 84, 1708 (2000).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the staff of the Angara-5-1 facility for technical support during the experiments.

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 20-02-00133).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. S. Volkov or A. A. Rupasov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkov, G.S., Grabovsky, E.V., Gritsuk, A.N. et al. Increasing the Specific Energy Concentration of High-Current Z-Pinch Plasma by Using Transient Compression Modes. Plasma Phys. Rep. 48, 337–345 (2022). https://doi.org/10.1134/S1063780X22040146

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X22040146

Keywords:

Navigation