Skip to main content
Log in

Characterization of Nanosecond Diffuse-Channel Discharges in Atmospheric Air

  • PLASMA DYNAMICS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

It is shown that, in addition to the well-known Townsend and streamer discharges in gas, there is a third type of discharge, namely nanosecond diffuse-channel discharge. It occurs in a highly overvolted gas gap. The study is carried out on the example of air at normal conditions in a uniform electric field. In this case, the ratio \(d{\text{/}}{{x}_{{\text{c}}}} \gg 1\), where d is the gap spacing and xc is the electron avalanche critical length. The electric field at the head of such an avalanche reaches 106 V cm–1 and higher, therefore, it emits runaway electrons, which create new electrons ahead of the old ones. An avalanche chain is formed, formally similar to a streamer but with low electrical conductivity. The runaway electrons and ultraviolet photoemission from the cathode contribute to the accumulation of secondary electrons in the gap. This leads to the appearance of a diffuse glow discharge, which then turns into a channel discharge and in an arc. The dependence of the overvoltage coefficient η on the product pd is calculated, where p is the gas pressure at d/xc = 10. It is compared with the well-known curve that separates Townsend and streamer discharges in air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Electrical Breakdown of Gases, Ed. by J. M. Meek and J. D. Craggs (Clarendon Press, Oxford, 1953).

    MATH  Google Scholar 

  2. H. Raether, Electron Avalanches and Breakdown in Gases (Butterworths, London, 1964).

    Google Scholar 

  3. Yu. D. Korolev and G. A. Mesyats, Physics of Pulsed Breakdown in Gases (URO-Press, Ekaterinburg, 1998) [in Russian].

    Google Scholar 

  4. G. A. Mesyats, Doctoral Dissertation in Physics and Mathematics (Tomsk Polytechnic Institute, Tomsk, 1966).

  5. G. A. Mesyats, Yu. I. Bychkov, and A. M. Iskol’dskii, Sov. Phys.–Tech. Phys. 13, 1051 (1969).

    Google Scholar 

  6. G. A. Mesyats, Yu. I. Bychkov, and V. V. Kremnev, Sov. Phys.–Usp. 15, 282 (1972).

    Article  ADS  Google Scholar 

  7. K. R. Allen and K. Phillips, Electr. Rev. 173, 779 (1963).

    Google Scholar 

  8. H. Tholl, Z. Naturforsch. 19a, 346 (1964).

  9. R. C. Fletcher, Phys. Rev. 76, 1501 (1949).

    Article  ADS  Google Scholar 

  10. E. M. Bazelyan and Yu. P. Raizer, Spark Discharge (MFTI, Moscow, 1997; CRC, Boca Raton, 1998).

  11. Yu. L. Stankevich and N. S. Kalinin, Sov. Phys.–Dokl. 12, 1042 (1967).

    ADS  Google Scholar 

  12. Yu. D. Korolev and G. A. Mesyats, Field-Emission and Explosive Processes in Gas Discharges (Nauka, Novosibirsk, 1982) [in Russian].

    Google Scholar 

  13. P. Felsenthal and J. M. Proud, Phys. Rev. 139, A1796 (1965).

    Article  ADS  Google Scholar 

  14. G. A. Mesyats, Phys.–Usp. 49, 1045 (2006).

    Article  Google Scholar 

  15. G. A. Mesyats, N. M. Zubarev, and I. V. Vasenina, Bull. Lebedev Phys. Inst. 47, 209 (2020). https://doi.org/10.3103/S1068335620070052

    Article  ADS  Google Scholar 

  16. H. Schlumbohm, Z. Phys. 184, 492 (1965).

    Article  ADS  Google Scholar 

  17. R. B. Baksht, Yu. L. Korolev, and G. A. Mesyats, Plasma Phys. Rep. 3, 269 (1977).

    Google Scholar 

  18. G. A. Mesyats, Sov. Tech. Phys. Lett. 1, 385 (1975).

    Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (project no. 19-79-30086).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Mesyats.

Additional information

Translated by L. Mosina

This article was prepared based on the results of the International Conference “Space Plasma Research—Prospects for the Next Decades” dedicated to the 80th anniversary of Academician Albert Abubakirovich Galeev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mesyats, G.A., Vasenina, I.V. Characterization of Nanosecond Diffuse-Channel Discharges in Atmospheric Air. Plasma Phys. Rep. 47, 907–911 (2021). https://doi.org/10.1134/S1063780X2109004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X2109004X

Keywords:

Navigation