Skip to main content
Log in

Simulation of a Positive Corona Discharge from a Plane-Parallel System of Horizontal Grounded Wires in the Electric Field of a Thundercloud

  • LOW-TEMPERATURE PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

We study theoretically a non-stationary positive corona developing in free space from a system of grounded wires suspended at the same height and placed in a uniform thundercloud electric field growing with time. To calculate the corona characteristics, a two-dimensional computer model has been developed. The discharge is described by an equation for the density of positive ions of a single species and Poisson’s equation for the electric field. It is assumed for simplicity that the wires are identical and the neighboring wires are separated by the same distance. The two-dimensional calculations are performed for the system composed of infinite number of parallel wires, when the problem is reduced to studying the corona from one wire, and for the system consisting of eight parallel wires. The corona current, the distribution of the space charge generated by the corona, and the electric field about the wires are found. In the case of the corona from the infinite number of the wires, the calculated corona current reaches saturation and depends only on the growth rate of the thundercloud electric field and the distance between the wires. The results may be of interest for subsequent assessments of the reliability of multi-wire lightning protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.

Similar content being viewed by others

Notes

  1. As compared to [53], in formula (14) we changed the sign of the right hand side in order to bring the Green’s function in accordance with its definition from [52].

  2. It should be noted that, as shown in [53], the integral of the considered type over a semicircle of infinite radius R tends to zero, even if the potential \(\varphi {\kern 1pt} '\) grows with R at infinity, but not faster than \({{R}^{\alpha }}\), where α <1.

REFERENCES

  1. E. M. Bazelyan and Yu. P. Raizer, Phys.–Usp. 43, 701 (2000).

    Article  Google Scholar 

  2. Lightning, Ed. by R. H. Golde (Academic, New York, 1977).

    Google Scholar 

  3. V. A. Rakov and M. A. Uman, Lightning: Physics and Effects (Cambridge University Press, Cambridge, 2003).

    Book  Google Scholar 

  4. N. L. Aleksandrov, E. M. Bazelyan, R. B. Carpenter, Jr., M. M. Drabkin, and Yu. P. Raizer, J. Phys. D: Appl. Phys. 34, 3256 (2001).

    Article  ADS  Google Scholar 

  5. J. Montanyà, O. van der Velde, and E. R. Williams, J. Geophys. Res.: Atmos. 119, 1455 (2014). https://doi.org/10.1002/2013JD020225

    Article  ADS  Google Scholar 

  6. R. B. Standler and W. P. Winn, Q. J. R. Meteorol. Soc. 105, 285 (1979).

    Article  ADS  Google Scholar 

  7. S. Soula and S. Chauzy, J. Geophys. Res.: Atmos. 96, 22327 (1991).

    Article  ADS  Google Scholar 

  8. S. Soula, J. Geophys. Res.: Atmos. 99, 10759 (1991).

    Article  ADS  Google Scholar 

  9. E. M. Bazelyan and Yu. P. Raizer, Lightning Physics and Lightning Protection (Nauka, Moscow, 2001; IOP, Bristol, 2000).

  10. E. M. Bazelyan and M. M. Drabkin, in 2003 IEEE Power Engineering Society General Meeting, Toronto, ON, 2003, Vol. 4, p. 2201.

    Google Scholar 

  11. F. A. M. Rizk, IEEE Trans. Power Deliv. 25, 1996 (2010).

    Article  Google Scholar 

  12. E.M. Bazelyan, personal communication, 2015.

  13. N. L. Aleksandrov, E. M. Bazelyan, R. B. Carpenter, Jr., M. M. Drabkin, and Yu. P. Raizer, Plasma Phys. Rep. 28, 953 (2002).

    Article  ADS  Google Scholar 

  14. N. L. Aleksandrov, E. M. Bazelyan, F. D’Alessandro, and Yu. P. Raizer, J. Phys. D: Appl. Phys. 38, 1225 (2005).

    Article  ADS  Google Scholar 

  15. E. M. Bazelyan, Yu. P. Raizer, and N. L. Aleksandrov, Plasma Sources Sci. Technol. 17, 024015 (2008).

  16. E. M. Bazelyan, Yu. P. Raizer, N. L. Aleksandrov, and F. D’Alessandro, Atmos. Res. 94, 436 (2009).

    Article  Google Scholar 

  17. M. Becerra, J. Phys. D: Appl. Phys. 46, 135205 (2013).

  18. M. Becerra, Atmos. Res. 149, 316 (2014).

    Article  Google Scholar 

  19. M. Becerra and V. Cooray, J. Phys. D: Appl. Phys. 39, 3708 (2006).

    Article  ADS  Google Scholar 

  20. M. Becerra and V. Cooray, J. Phys. D: Appl. Phys. 39, 4695 (2006).

    Article  ADS  Google Scholar 

  21. E. M. Bazelyan, Yu. P. Raizer, and N. L. Aleksandrov, Atmos. Res. 153, 74 (2015).

    Article  Google Scholar 

  22. F. A. M. Rizk, IEEE Trans. Power Deliv. 26, 1156 (2011).

    Article  Google Scholar 

  23. M. S. Mokrov, Yu. P. Raizer, and E. M. Bazelyan, J. Phys. D: Appl. Phys. 46, 455202 (2013).

  24. E. M. Bazelyan, Yu. P. Raizer, and N. L. Aleksandrov, J. Atmos. Sol.-Terr. Phys. 109, 80 (2014).

    Article  ADS  Google Scholar 

  25. E. M. Bazelyan, Yu. P. Raizer, and N. L. Aleksandrov, J. Atmos. Sol.–Terr. Phys. 109, 91 (2014).

    Article  ADS  Google Scholar 

  26. N. Neimarlija, I. Demirdzic, and S. Muzaferija, J. Electrost. 67, 37 (2009).

    Article  Google Scholar 

  27. A. J. Medlin, C. A. J. Fletcher, and R. Morrow, J. Electrost. 43, 39 (1998).

    Article  Google Scholar 

  28. B. Y. Guo, J. Guo, and A. B. Yu, J. Electrost. 72, 301 (2014).

    Article  Google Scholar 

  29. J. L. Davis and J. F. Hoburg, J. Electrost. 18, 1 (1986).

    Article  Google Scholar 

  30. N. C. Nguyen, C. Guerra-Garcia, J. Peraire, and M. Martinez-Sanchez, J. Electrost. 89, 1 (2017).

    Article  Google Scholar 

  31. A. J. Medlin, R. Morrow, and C. A. J. Fletcher, J. Electrost. 43, 61 (1998).

    Article  Google Scholar 

  32. T. Lu, H. Feng, X. Cui, Z. Zhao, and L. Li, IEEE Trans. Magn. 46, 2939 (2010). https://doi.org/10.1109/TMAG.2010.2044149

    Article  ADS  Google Scholar 

  33. J. Qiao, J. Zou, J. Yuan, J. B. Lee, and M. Ju, IEEE Trans. Magn. 52, 1 (2016). https://doi.org/10.1109/TMAG.2015.2481725

    Article  ADS  Google Scholar 

  34. C. Guerra-Garcia, N. C. Nguyen, T. Mouratidis, and M. Martinez-Sanchez, J. Geophys. Res.: Atmos. 125, e2020JD032908 (2020).

  35. S. Chauzy and C. Rennela, J. Geophys. Res.: Atmos. 90, 6051 (1985).

    Article  ADS  Google Scholar 

  36. I. E. Tamm, Fundamentals of the Theory of Electricity, transl. from the 1976 Russ. ed. (Mir, Moscow, 1979) [Russ. original, Nauka, Moscow, 1976].

  37. C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation (CRC Press, Boca Raton, 2004), Ch. 14, p. 318.

    Google Scholar 

  38. Y. Zheng, B. Zhang, and J. He, Phys. Plasmas 18, 123503 (2011).

  39. L. Liu and M. Becerra, J. Phys. D: Appl. Phys. 49, 225202 (2016).

  40. P. Dordizadeh, K. Adamiak, and G. S. P. Castle, Plasma Sources Sci. Technol. 25, 065009 (2016).

  41. N. G. C. Ferreira, D. F. N. Santos, P. G. C. Almeida, G. V. Naidis, and M. S. Benilov, J. Phys. D: Appl. Phys. 52, 355206 (2019).

  42. Yu. P. Raizer, Gas Discharge Physics (ID Intellekt, Dolgoprudnyi, 2009; Springer, Berlin, 1997).

  43. R. T. Waters, T. E. S. Rickard, and W. B. Stark, in Proceedings of International High Voltage Symposium, Munich, 1972, p. 104.

  44. N. B. Bogdanova, B. G. Pevchev, and V. I. Popkov, Izv. Akad. Nauk SSSR: Energ. Transp., No. 1, 96 (1978).

    Google Scholar 

  45. R. Morrow, J. Phys. D: Appl. Phys. 30, 3099 (1997).

    Article  ADS  Google Scholar 

  46. V. Gopalakrishnan, S. D. Pawar, P. Murugavel, and K. P. Johare, J. Atmos. Sol.–Terr. Phys. 73, 1876 (2011).

    Article  ADS  Google Scholar 

  47. B. N. Azarenok, Comput. Math. Math. Phys. 49, 797 (2009).

    Article  MathSciNet  Google Scholar 

  48. C. A. J. Fletcher, Computational Techniques for Fluid Dynamics, Vol. 1: Fundamental and General Techniques (Springer-Verlag, Berlin, 1991).

  49. J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics (Springer-Verlag, Berlin, 2002).

    Book  Google Scholar 

  50. P. Wesseling, Principles of Computational Fluid Dynamics (Springer Series in Computational Mathematics, Vol. 29) (Springer-Verlag, Berlin, 2001).

  51. A. Toselli and O. Widlund, Domain Decomposition Methods—Algorithms and Theory (Springer Series in Computational Mathematics, Vol. 34) (Springer-Verlag, Berlin, Heidelberg, 2005).

  52. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1962).

    MATH  Google Scholar 

  53. M. D. Greenberg, Applications of Green’s Functions in Science and Engineering (Dover, New York, 2015).

    Google Scholar 

  54. G. H. Miller, J. Comput. Phys. 227, 7917 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  55. K. V. Hagenow and K. Lackner, in Proceedings of the 7th Conference on the Numerical Simulation of Plasmas, New York, 1975, p. 140.

  56. K. Lackner, Comput. Phys. Commun. 12, 33 (1976).

    Article  ADS  Google Scholar 

  57. M. A. Lavrent’ev and B. V. Shabat, Methods of Theory of Functions of Complex Variables (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  58. H. Buchholz, Elektrische und Magnetische Potentialfelder (Springer-Verlag, Berlin, 1957).

    Book  Google Scholar 

  59. W. R. Smythe, Static and Dynamic Electricity (Taylor &Francis, Boca Raton, FL, 1989), Ch. 4, p. 107.

    MATH  Google Scholar 

Download references

Funding

The work of M.S. Mokrov was supported by the Russian Foundation for Basic Research, project no. 18-38-00051-mol-a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Mokrov.

Additional information

Translated by E. Chernokozhin

APPENDIX

APPENDIX

1.1 POTENTIAL INDUCED BY THE PERIODIC SYSTEM OF PARALLEL WIRES IN EMPTY SPACE ABOVE THE GROUND

This potential \(\varphi {\kern 1pt} '(x,y)\) is given by the formula

$$\begin{gathered} \varphi {\kern 1pt} '(x,y) \\ \, = \frac{q}{{4\pi {{\varepsilon }_{{\text{0}}}}}}\sum\limits_{k = - \infty }^\infty {\int\limits_{ - \infty }^{ + \infty } {\left( {\frac{{dz}}{{\sqrt {{{{\left( {x - {{x}_{{\text{k}}}}} \right)}}^{2}} + {{{(y - h)}}^{2}} + {{z}^{2}}} }}} \right.} } \\ \, - \left. {\frac{{dz}}{{\sqrt {{{{\left( {x - {{x}_{{\text{k}}}}} \right)}}^{2}} + {{{(y + h)}}^{2}} + {{z}^{2}}} }}} \right), \\ \end{gathered} $$
(A.1)

where xk = D/2 + kD are the coordinates of the centers of the wires, k = 0, ±1, ±2, etc. (see Fig. 1a), and q = 2πr0ε0E(r0) is the charge per unit length of each wire.

Evaluating the integrals in (A.1), we obtain

$$\varphi {\kern 1pt} '(x,y) = \frac{q}{{4\pi {{\varepsilon }_{{\text{0}}}}}}\sum\limits_{k = - \infty }^\infty {\ln \left[ {\frac{{{{{\left( {x - {{x}_{k}}} \right)}}^{2}} + {{{(y + h)}}^{2}}}}{{{{{\left( {x - {{x}_{k}}} \right)}}^{2}} + {{{(y - h)}}^{2}}}}} \right]} {\kern 1pt} {\kern 1pt} .$$
(A.2)

Transforming (A.2) to the summation over positive k, we find

$$\begin{gathered} \varphi {\kern 1pt} '(x,y) = \frac{q}{{4\pi {{\varepsilon }_{{\text{0}}}}}}\ln \left[ {\frac{{{{{\left( {x - D{\text{/}}2} \right)}}^{2}} + {{{(y + h)}}^{2}}}}{{{{{\left( {x - D{\text{/}}2} \right)}}^{2}} + {{{(y - h)}}^{2}}}}} \right] \\ \, + \frac{q}{{4\pi {{\varepsilon }_{{\text{0}}}}}}\sum\limits_{k = 1}^\infty {\ln \left\{ {\left[ {\frac{{{{{\left( {x - D{\text{/}}2 + kD} \right)}}^{2}} + {{{(y + h)}}^{2}}}}{{{{{\left( {x - D{\text{/}}2 + kD} \right)}}^{2}} + {{{(y - h)}}^{2}}}}} \right]} \right.} \\ \, \times \left. {\left[ {\frac{{{{{\left( {x - D{\text{/}}2 - kD} \right)}}^{2}} + {{{(y + h)}}^{2}}}}{{{{{\left( {x - D{\text{/}}2 - kD} \right)}}^{2}} + {{{(y - h)}}^{2}}}}} \right]} \right\}. \\ \end{gathered} $$
(A.3)

Introducing the variable ξ = xD/2 in (A.3) and replacing in the last term the sum of logarithms by the product under the sign of logarithm, we have

$$\begin{gathered} \varphi {\kern 1pt} '(x,y) = \frac{q}{{4\pi {{\varepsilon }_{{\text{0}}}}}}\ln \left[ {\frac{{{{\xi }^{2}} + {{{(y + h)}}^{2}}}}{{{{\xi }^{2}} + {{{(y - h)}}^{2}}}}} \right] \\ \, + \frac{q}{{4\pi {{\varepsilon }_{{\text{0}}}}}}\ln \prod\limits_{k = 1}^\infty {\left\{ {\left[ {\frac{{{{{\left( {\xi + kD} \right)}}^{2}} + {{{(y + h)}}^{2}}}}{{{{{\left( {\xi + kD} \right)}}^{2}} + {{{(y - h)}}^{2}}}}} \right]} \right.} \\ \, \times \left. {\left[ {\frac{{{{{\left( {\xi - kD} \right)}}^{2}} + {{{(y + h)}}^{2}}}}{{{{{\left( {\xi - kD} \right)}}^{2}} + {{{(y - h)}}^{2}}}}} \right]} \right\}. \\ \end{gathered} $$
(A.4)

Introducing the complex variables \({{z}_{1}} = \frac{\xi }{D} + i\frac{{(y + h)}}{D}\), \({{z}_{2}} = \frac{\xi }{D} + i\frac{{(y - h)}}{D}\) and their complex conjugates \({{\bar {z}}_{1}}\) and \({{\bar {z}}_{2}}\), we rewrite the product in (A.4) as

$$\begin{gathered} \prod\limits_{k = 1}^\infty {\left[ {\frac{{{{{\left( {\xi + kD} \right)}}^{2}} + {{{(y + h)}}^{2}}}}{{{{{\left( {\xi + kD} \right)}}^{2}} + {{{(y - h)}}^{2}}}}} \right]\left[ {\frac{{{{{\left( {\xi - kD} \right)}}^{2}} + {{{(y + h)}}^{2}}}}{{{{{\left( {\xi - kD} \right)}}^{2}} + {{{(y - h)}}^{2}}}}} \right]} \\ \, = \prod\limits_{k = 1}^\infty {\left[ {\frac{{\left( {1 + {{z}_{1}}{\text{/}}k} \right)\left( {1 - {{z}_{1}}{\text{/}}k} \right)\left( {1 + {{{\bar {z}}}_{1}}{\text{/}}k} \right)\left( {1 - {{{\bar {z}}}_{1}}{\text{/}}k} \right)}}{{\left( {1 + {{z}_{2}}{\text{/}}k} \right)\left( {1 - {{z}_{2}}{\text{/}}k} \right)\left( {1 + {{{\bar {z}}}_{2}}{\text{/}}k} \right)\left( {1 - {{{\bar {z}}}_{2}}{\text{/}}k} \right)}}} \right]} {\kern 1pt} {\kern 1pt} . \\ \end{gathered} $$

Transforming the last expression by using the well-known sine expansion \(\frac{{\sin z}}{z} = \prod\nolimits_{k = 1}^\infty {\left( {1 - \frac{z}{{k\pi }}} \right)} \left( {1 + \frac{z}{{k\pi }}} \right)\) [57], we find

$$\begin{gathered} \prod\limits_{k = 1}^\infty {\left[ {\frac{{\left( {1 + {{z}_{1}}{\text{/}}k} \right)\left( {1 - {{z}_{1}}{\text{/}}k} \right)\left( {1 + {{{\bar {z}}}_{1}}{\text{/}}k} \right)\left( {1 - {{{\bar {z}}}_{1}}{\text{/}}k} \right)}}{{\left( {1 + {{z}_{2}}{\text{/}}k} \right)\left( {1 - {{z}_{2}}{\text{/}}k} \right)\left( {1 + {{{\bar {z}}}_{2}}{\text{/}}k} \right)\left( {1 - {{{\bar {z}}}_{2}}{\text{/}}k} \right)}}} \right]} \\ \, = \frac{{{{z}_{2}}{{{\bar {z}}}_{2}}}}{{{{z}_{1}}{{{\bar {z}}}_{1}}}}\frac{{\sin \pi {{z}_{1}}\sin \pi {{{\bar {z}}}_{1}}}}{{\sin \pi {{z}_{2}}\sin \pi {{{\bar {z}}}_{2}}}}. \\ \end{gathered} $$

Returning back to the variables ξ and y in the right-hand side of the last expression and using the formula for the product of sines, we obtain that the infinite product under the sign of logarithm in (A.4) is equal to the following expression:

$$\begin{gathered} \frac{{{{z}_{2}}{{{\bar {z}}}_{2}}}}{{{{z}_{1}}{{{\bar {z}}}_{1}}}}\frac{{\sin \pi {{z}_{1}}\sin \pi {{{\bar {z}}}_{1}}}}{{\sin \pi {{z}_{2}}\sin \pi {{{\bar {z}}}_{2}}}} = \left[ {\frac{{{{\xi }^{2}} + {{{(y - h)}}^{2}}}}{{{{\xi }^{2}} + {{{(y + h)}}^{2}}}}} \right]{\kern 1pt} \\ \times \;\frac{{\cosh {\kern 1pt} \left[ {2\pi (h + y){\text{/}}D} \right] - \cos {\kern 1pt} \left( {2\pi \xi {\text{/}}D} \right)}}{{\cosh {\kern 1pt} \left[ {2\pi (h - y){\text{/}}D} \right] - \cos {\kern 1pt} \left( {2\pi \xi {\text{/}}D} \right)}}. \\ \end{gathered} $$
(A.5)

Replacing the infinite product in (A.4) by the right-hand side of (A.5) and combining two terms in the right-hand side of (A.4), finally we have

$$\begin{gathered} \varphi {\kern 1pt} '(x,y) = \frac{q}{{4\pi {{\varepsilon }_{{\text{0}}}}}} \\ \times \;\ln \left\{ {\frac{{\cosh \left[ {2\pi (h + y){\text{/}}D} \right] - \cos \left( {2\pi \xi {\text{/}}D} \right)}}{{\cosh \left[ {2\pi (h - y){\text{/}}D} \right] - \cos \left( {2\pi \xi {\text{/}}D} \right)}}} \right\}. \\ \end{gathered} $$
(A.6)

Formula (A.6) is similar to that given in the book [58], in which a similar problem is considered, namely, the distribution of the potential induced by a periodic system of charged lines is found. However, the formula of [58] contains the factor \(2\pi {{\varepsilon }_{{\text{0}}}}\) rather than \(4\pi {{\varepsilon }_{{\text{0}}}}\) in the denominator. Besides in the mentioned formula, the value of the argument of the cosine and hyperbolic cosine contains the factor π, as opposed to our factor 2π.

Returning from ξ = xD/2 to the initial variable x and expressing the charge per unit length q = 2πr0ε0E(r0) in terms of the potential U by using (20), we can rewrite (A.6) in the form:

$$\begin{gathered} \varphi {\kern 1pt} '(x,y) = \frac{U}{{2\ln \left[ {\frac{{\sinh (\pi 2h{\text{/}}D)}}{{\pi {{r}_{0}}{\text{/}}D}}} \right]}} \\ \, \times \ln \left\{ {\frac{{\cosh \left[ {2\pi (h + y){\text{/}}D} \right] + \cos \left( {2\pi x{\text{/}}D} \right)}}{{\cosh \left[ {2\pi (h - y){\text{/}}D} \right] + \cos \left( {2\pi x{\text{/}}D} \right)}}} \right\}. \\ \end{gathered} $$
(A.7)

Note finally that the formula given in the book [59] for the potential about a grating composed of parallel wires, if r0D, h, can be transformed to (A.7) after expanding the potential as a series in the small parameter (r0/D)2 and neglecting the high-order terms.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokrov, M.S., Raizer, Y.P. Simulation of a Positive Corona Discharge from a Plane-Parallel System of Horizontal Grounded Wires in the Electric Field of a Thundercloud. Plasma Phys. Rep. 47, 568–587 (2021). https://doi.org/10.1134/S1063780X2106012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X2106012X

Keywords:

Navigation