Skip to main content
Log in

Self-interacting Stationary Formations in Plasmas under Externally Controlled Fields

  • SPACE PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The formation and evolution of a Korteweg–de Vries (KdV) soliton in a dense quantum plasma consisting of electrons and ions is studied. The solitary profile is first obtained and the external force is applied to study the effect of force on the stationary formation. Further, a new technique based on the MacCormack Predictor Corrector scheme is designed to study the plasma species individual behavior in external field and their collective effect in the KdV soliton formations. The results thus obtained will help in future understanding of the plasma particles’ behavior under a variety of external forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.

Similar content being viewed by others

REFERENCES

  1. I. B. Bernstein, J. M. Greene, and M. D. Kruskal, Phys. Rev. 108, 546 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  2. C. A. Cattell, J. Crumley, J. Dombeck, J. R. Wygant, and F. S. Mozer, Geophys. Res. Lett. 29 (5), 9 (2002).

    Article  Google Scholar 

  3. H. Matsumoto, X. H. Deng, H. Kojima, and R. R. Anderson, Geophys. Res. Lett. 30 (6), 1326 (2003).

    Article  ADS  Google Scholar 

  4. H. Matsumoto, H. Kojima, T. Miyatake, Y. Omura, M. Okada, I. Nagano, and M. Tsutsui, Geophys. Res. Lett. 21, 2915 (1994).

    Article  ADS  Google Scholar 

  5. C. Cattell, J. Dombeck, J. Wygant, J. F. Drake, M. Swisdak, M. L. Goldstein, W. Keith, A. Fazakerley, M. André, E. Lucek, and A. Balogh, J. Geophys. Res. 110 (A1), A01211 (2005).

  6. Y. V Khotyaintsev, A. Vaivads, M. André, M. Fujimoto, A. Retinò, and C. Owen, Phys. Rev. Lett. 105, 165002 (2010).

  7. J. S. Pickett, L.-J. Chen, S. W. Kahler, O. Santolík, M. L. Goldstein, B. Lavraud, P. M. E. Décréau, R. Kessel, E. Lucek, G. S. Lakhina, B. T. Tsurutani, D. A. Gurnett, N. Cornilleau-Wehrlin, A. Fazakerley, H. Rème, et al., Nonlinear Process. Geophys. 12, 181 (2005).

    Article  ADS  Google Scholar 

  8. F. Mozer, O. Agapitov, A. Artemyev, J. F. Drake, V. Krasnoselskikh, S. Lejosne, and I. Vasko, Geophys. Res. Lett. 42, 3627 (2015).

    Article  ADS  Google Scholar 

  9. R. E. Ergun, C. W. Carlson, J. P. McFadden, E. S. Mozer, G. T. Delory, W. Peria, C. C. Chaston, M. Temerin, I. Roth, L. Muschietti, R. Elphic, R. Strangeway, R. Pfafp, C. A. Cattell, D. Klumpar, et al., Geophys. Res. Lett. 25, 2041 (1998).

    Article  ADS  Google Scholar 

  10. D. M. Malaspina, D. L. Newman, L. B. Willson, K. Goetz, P. J. Kellogg, and K. Kerstin, J. Geophys. Res.: Space Phys. 118, 591 (2013).

    Article  ADS  Google Scholar 

  11. Y. A. Berezin and V. I. Karpman, Sov. Phys.–JETP 19, 1265 (1964).

    Google Scholar 

  12. F. Haas, L. G. Garcia, J. Goedert, and G. Manfredi, Phys. Plasmas 10, 3858 (2003).

    Article  ADS  Google Scholar 

  13. F. Haas and S. Mahmood, Phys. Rev. E 92, 053112 (2015).

  14. P. Shukla, M. Yu, and N. Tsintsadze, Phys. Fluids 27, 327 (1984).

    Article  ADS  Google Scholar 

  15. P. K. Shukla, Dust Plasma Interaction in Space (Nova Science, New York, 2002).

    Google Scholar 

  16. G. Manfredi, S. Mola, and M. R. Feix, Eur. J. Phys. 14, 101 (1993).

    Article  Google Scholar 

  17. G. Manfredi and F. Valsaque, Comput. Phys. Commun. 164, 262 (2004).

    Article  ADS  Google Scholar 

  18. B. Eliasson and P. K. Shukla, Phys. Rev. E 69, 067401 (2004).

  19. B. Eliasson and P. K. Shukla, Phys. Rev. E 83, 046407 (2011).

  20. A. P. Misra and A. R. Chowdhury, Eur. Phys. J. D 39, 49 (2006).

    Article  ADS  Google Scholar 

  21. A. P. Misra and P. K. Shukla, Phys. Plasmas 14, 082312 (2007).

  22. A. P. Misra and C. Bhowmik, Phys. Lett. A 369, 90 (2007).

    Article  ADS  Google Scholar 

  23. B. Ghosh, S. Chandra, and S. N. Paul, Phys. Plasmas 18, 012106 (2011).

  24. B. Ghosh, S. Chandra, and S. N. Paul, Pramana 78, 779 (2012).

    Article  ADS  Google Scholar 

  25. J. Goswami, S. Chandra, J. Sarkar, D. Bhattacharya, D. Nandi, and B. Ghosh, Sustainable Humanosphere 16 (1), 910 (2020).

    Google Scholar 

  26. J. Goswami, S. Chandra, J. Sarkar, D. Bhattacharya, D. Nandi, and B. Ghosh, Sustainable Humanosphere 16 (1), 917 (2020).

    Google Scholar 

  27. J. Sarkar, J. Goswami, S. Chandra, C. Das, and B. Ghosh, Sustainable Humanosphere 16 (1), 611 (2020).

    Google Scholar 

  28. S. Chandra and B. Ghosh, Indian J. Pure Appl. Phys. 51, 627 (2013).

    Google Scholar 

  29. S. Chandra, S. N. Paul, and B. Ghosh, Astrophys. Space Sci. 343, 213 (2013).

    Article  ADS  Google Scholar 

  30. S. Chandra and B. Ghosh, World Acad. Sci., Eng. Technol. 71, 792 (2012).

    Google Scholar 

  31. S. Chandra, S. N. Paul, and B. Ghosh, Indian J. Pure Appl. Phys. 50, 314 (2012).

    Google Scholar 

  32. A. K. Singh and S. Chandra, Afr. Rev. Phys. 12, 84 (2017).

    Google Scholar 

  33. J. Goswami, S. Chandra, J. Sarkar, S. Chaudhuri, and B. Ghosh, Laser Part. Beams 38, 25 (2020).

    Article  ADS  Google Scholar 

  34. J. Sarkar, S. Chandra, J. Goswami, and B. Ghosh, Contrib. Plasma Phys. 60, e201900202 (2020).

  35. M. Akbari-Moghanjoughi, Phys. Plasmas 17, 082315 (2010).

  36. M. Akbari-Moghanjoughi, Astrophys. Space Sci. 332, 187 (2011).

    Article  ADS  Google Scholar 

  37. A. A. Mamun, Astrophys. Space Sci. 268, 443 (1999).

    Article  ADS  Google Scholar 

  38. A. A. Mamun and P. K. Shukla, Phys. Plasmas 17, 104504 (2010).

  39. M. Tribeche and P. K. Shukla, Phys. Plasmas 18, 103702 (2011).

  40. M. Tribeche and L. Djebarni, Phys. Plasmas 17, 124502 (2010).

  41. M. Marklund, P. K. Shukla, L. Stenflo, G. Brodin, and M. Servin, Plasma Phys. Control. Fusion 47, L25 (2005).

    Article  ADS  Google Scholar 

  42. G. Brodin, M. Marklund, and G. Manfredi, Phys. Rev. Lett. 100, 175001 (2008).

  43. M. Bonitz, D. Semkat, A. Filinov, V. Golubnychyi, D. Kremp, D. O. Gericke, M. S. Murillo, V. Filinov, V. Fortov, W. Hoyer, and S. W. Koch, J. Phys. A: Math. Gen. 36, 5921 (2003).

    Article  ADS  Google Scholar 

  44. M. Akbari-Moghanjoughi, Phys. Plasmas 23, 034701 (2016).

  45. F. Haas, Plasma Phys. Control. Fusion 61, 044001 (2019).

  46. P. A. Andreev, Ann. Phys. 350, 198 (2014).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to thank Mr. Jyotirmoy Goswami, and Prof. Asesh Roy Chowdhury for their support and inspiration. Authors would like to thank the Physics departments of Jadavpur University and Government General Degree College at Kushmandi for providing facilities to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Sarkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandra, S., Sarkar, J., Das, C. et al. Self-interacting Stationary Formations in Plasmas under Externally Controlled Fields. Plasma Phys. Rep. 47, 306–317 (2021). https://doi.org/10.1134/S1063780X21030041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X21030041

Keywords:

Navigation