Skip to main content
Log in

Electrostatic Rogue Waves in a Degenerate Thomas-Fermi Plasma

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, we search for the modulational instability (MI) and the possibility of rogue wave generation in a degenerated Thomas-Fermi plasma, consisting of cold inertial ions and Thomas-Fermi distributed electrons and positrons. A multiscale perturbation method is used to derive a nonlinear Schrödinger equation (NLSE) for the envelope amplitude, based on which the occurrence of MI and the generation of rogue as well as super rogue waves is investigated at length. The plasma configurational parameters (namely the positron concentration and the ratio of electron Fermi temperature to positron Fermi temperature) are shown to affect the conditions for MI significantly, and in fact altering the associated threshold. In particular, the positron concentration as well as the temperature ratio leads to an increase in the critical wavenumber, suggesting that MI sets in for larger values of the wavenumber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P.A. Markowich, C.A. Ringhofer, C. Schmeise, Semiconductor equations (Springer, Vienna, 1990)

    Book  MATH  Google Scholar 

  2. Y.D. Jung, Phys. Plasmas. 8, 3842 (2001)

    Article  ADS  Google Scholar 

  3. M. Marklund, P.K. Shukla, Rev. Mod. Phys. 78, 591 (2006)

    Article  ADS  Google Scholar 

  4. G. Manfredi, Fields Inst. Commun. 46, 263 (2005)

    Google Scholar 

  5. F. Haas, L.G. Garcia, J. Goedert, G. Manfredi, Phys. Plasmas. 10, 3858 (2003)

    Article  ADS  Google Scholar 

  6. F. Haas, Quantum plasmas: An hydrodynamic approach (Springer, New York, 2011)

    Book  Google Scholar 

  7. A. Domps, P.-G. Reinhard, E. Suraud, Phys. Rev. Lett. 81, 5524 (1998)

    Article  ADS  Google Scholar 

  8. A. Banerjee, M.K. Harbolaa, J. Chem. Phys. 113, 5614 (2000)

    Article  ADS  Google Scholar 

  9. R. Feynman, Statistical Mechanics: A set of lectures (Reading, Benjamin, 1972)

    MATH  Google Scholar 

  10. M. Loffredo, L. Morato, Nuovo Cimento Soc. Ital. Fis., B. 108, 205 (1993)

    Article  ADS  Google Scholar 

  11. P.K. Shukla, S. Ali, Phys. Plasmas. 12, 114502 (2005)

    Article  ADS  Google Scholar 

  12. A. Qamar, A. Ur-Rahman, A.M. Mirza, Phys. Plasmas. 19, 052303 (2012)

    Article  ADS  Google Scholar 

  13. U.M. Abdelsalam, S. Ali, I. Kourakis, Phys. Plasmas. 19, 062107 (2012)

    Article  ADS  Google Scholar 

  14. M. McKerr, I. Kourakis, F. Haas, Plasma Phys. Control. Fusion. 56, 035007 (2014)

    Article  ADS  Google Scholar 

  15. U.M. Abdelsalam, W.M. Moslem, P.K. Shukla, Phys. Lett. A. 372, 4057 (2008)

    Article  ADS  Google Scholar 

  16. S. Ali, W.M. Moslem, I. Kourakis, P.K. Shukla, J. New Phys. 10, 023007 (2008)

    Article  Google Scholar 

  17. B. Ghosh, S. Chandra, S.N. Paul, Phys. Plasmas. 18, 012106 (2011)

    Article  ADS  Google Scholar 

  18. S. Ali, W.M. Moslem, P.K. Shukla, R. Schlickeiser, Phys. Plasmas. 14, 082307 (2007)

    Article  ADS  Google Scholar 

  19. K. Roy, A.P. Misra, P. Chatterjee, Phys. Plasmas. 15, 032310 (2008)

    Article  ADS  Google Scholar 

  20. S.A. Khan, W. Masood, Phys. Plasmas. 15, 062301 (2008)

    Article  ADS  Google Scholar 

  21. I. Kourakis, M. McKerr, Ur-Rahman A., J. Plasma Phys. 79, 1089 (2013)

    Article  ADS  Google Scholar 

  22. A. Ur-Rahman, M. McKerr, W.F. El-Taibany, I. Kourakis, A. Qamar, Phys. Plasmas. 22, 022305 (2015)

    Article  ADS  Google Scholar 

  23. M. Akbari-Moghanjoughi, Phys. Plasmas. 17, 082315 (2010)

    Article  ADS  Google Scholar 

  24. C. Kharif, E. Pelinovsky, A. Slunyaev. Rogue waves in the ocean (Springer, Heidelberg, 2009)

    MATH  Google Scholar 

  25. A. Osborne, Nonlinear ocean waves, Academic (2009)

  26. A.A. Kurkin, E.N. Pelinovsky, Killer-waves: Facts, theory and modeling (Nizhny Novgorod Univ Press, Nizhny Novgorod, 2004)

    Google Scholar 

  27. A.R. Osborne, Mar. Struct. 14, 275 (2001)

    Article  Google Scholar 

  28. D.H. Peregrine, J. Aust, Math. Soc. Ser. B, Appl. Math. 25, 16 (1983)

    Article  Google Scholar 

  29. A. Ankiewicz, N. Devine, N. Akhmediev, Phys. Lett. A. 373, 3997 (2009)

    Article  ADS  Google Scholar 

  30. N. Akhmediev, A. Ankiewicz, J.M. Soto-Crespo, Phys. Rev. E. 80, 026601 (2009)

    Article  ADS  Google Scholar 

  31. A. Chabchoub, N. Hoffmann, M. Onorato, N. Akhmediev, Phys. Rev. X. 2, 011015 (2012)

    Google Scholar 

  32. H. Bailung, S.K. Sharma, Y. Nakamura, Phys. Rev. Lett. 107, 255005 (2011)

    Article  ADS  Google Scholar 

  33. P. Pathak, S.K. Sharma, Y. Nakamura, H. Bailung, Phys. Plasmas. 23, 022107 (2016)

    Article  ADS  Google Scholar 

  34. P.K. Shukla, W.M. Moslem, Phys. Lett. A. 376, 1125 (2012)

    Article  ADS  Google Scholar 

  35. W.M. Moslem, Phys. Plasmas. 18, 032301 (2011)

    Article  ADS  Google Scholar 

  36. W.M. Moslem, P.K. Shukla, B. Eliasson, EPL. 96, 25002 (2011)

    Article  ADS  Google Scholar 

  37. W.M. Moslem, R. Sabry, S.K. El-Labany, P.K. Shukla, Phys. Rev. E. 84, 066402 (2011)

    Article  ADS  Google Scholar 

  38. T. Dauxois, M. Peyrard, Physics of solitons (Cambridge University Press, Cambridge, 2005)

    MATH  Google Scholar 

  39. A. Ankiewicz, P.A. Clarkson, N. Akhmediev, J. Phys. A. 43, 122002 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  40. A. Ankiewicz, J.M. Soto-Crespo, N. Akhmediev, Phys. Rev. E. 81, 046602 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  41. D.R. Solli, C. Ropers, P. Koonath, B. Jalali, Nature. 450, 1054 (2007)

    Article  ADS  Google Scholar 

  42. V.E. Fortov, Phys. Usp. 52, 615 (2009)

    Article  ADS  Google Scholar 

  43. I. Kuznetsova, J. Rafelski, Phys. Rev. D. 85, 085014 (2012)

    Article  ADS  Google Scholar 

  44. G. Sarri, K. Poder, J.M. Cole, W. Schumaker, A. Di Piazza, B. Reville, T. Dzelzainis, D. Doria, L.A. Gizzi, G. Grittani, S. Kar, C.H. Keitel, K. Krushelnick, S. Kuschel, S.P.D. Mangles, Z. Najmudin, N. Shukla, L.O. Silva, D. Symes, A.G. R. Thomas, M. Vargas, J. Vieira, M. Zepf, Nat. Commun. 6, 6747 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Ata-ur-Rahman gratefully acknowledges support from Higher Education Commission (HEC) Pakistan under Start-Up Research Grant Program (Project No: 21-474/SRGP/R&D/HEC/2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ata-ur-Rahman.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Here, the coefficients for the second harmonic components are provided. \({ {D_{2}^{0}}}_{1/2/3}\) are associated with the second-order, zeroth harmonic components of the ion density, speed, and potential respectively while \({ {D_{2}^{2}}}_{1/2/3}\) stand for the second-order, second harmonic components.

$$ \begin{array}{@{}rcl@{}} D_{2_{1}}^{0}& =&\frac{d_{1}\left( d_{1}+k^{2}\right)^{2}\left( \frac{ 2v_{g}\omega} {k}+\frac{\omega^{2}}{k^{2}}\right) -\frac{2d_{2}}{d_{1}}}{ d_{1}{v_{g}^{2}}-1} \\ D_{2_{3}}^{0}& =&\frac{1}{d_{1}}D_{2_{1}}^{0}-\frac{2d_{2}}{d_{1}} \\ D_{2_{2}}^{0}& =& v_{g}D_{2_{1}}^{0}-2\left( d_{1}+k^{2}\right)^{2}\frac{ \omega} {k} \end{array} $$
(24)
$$ \begin{array}{@{}rcl@{}} D_{2_{3}}^{2}& =&\frac{3\left( \frac{(d_{1}+k^{2})^{2}}{2}\right) -d_{2}}{ 3k^{2}} \\ D_{2_{1}}^{2}& =&\left( d_{1}+4k^{2}\right) D_{2_{3}}^{2}+d_{2} \\ D_{2_{2}}^{2}&=&\frac{\omega} {k}D_{2_{1}}^{2}-\left( d_{1}+k^{2}\right)^{2} \frac{\omega} {k} \end{array} $$
(25)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ata-ur-Rahman Electrostatic Rogue Waves in a Degenerate Thomas-Fermi Plasma. Braz J Phys 49, 517–525 (2019). https://doi.org/10.1007/s13538-019-00676-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-019-00676-3

Keywords

Navigation