Skip to main content
Log in

Inactivation of Microorganisms on Plane Surfaces by a Dielectric Barrier Discharge

  • APPLIED PHYSICS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Inactivation of spore microorganisms on a dielectric surface by a dielectric barrier discharge with plane electrodes was studied experimentally. It is shown that, at an average specific discharge power of 0.3 W/cm3 and exposure time of 0.5–60 s, the degree of inactivation amounts to three orders of magnitude and depends weakly on the exposure time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. U. Kogelschatz, Plasma Chem. Plasma Process. 23, 1 (2003).

    Article  Google Scholar 

  2. Z. Zhang, Z. Xu, C. Cheng, J. Wei, Ya. Lan, G. Ni, Q. Sun, S. Qian, H. Zhang, W. Xia, J. Shen, Y. Meng, and P. K. Chu, Plasma Chem. Plasma Process. 37, 415 (2017).

    Article  Google Scholar 

  3. Y. Ma, J. R. Chen, B. Yang, S. C. Pu, and Q. S. Yu, IEEE Trans. Plasma Sci. 42, 1607 (2014).

    Article  Google Scholar 

  4. M. Laroussi, Plasma Process. Polym. 11, 1138 (2014).

    Article  Google Scholar 

  5. D. Yuan, C. Ding, Y. He, Z. Wang, S. Kumar, Ya. Zhu, and K. Cen, Plasma Chem. Plasma Process. 37, 1165 (2017).

    Article  Google Scholar 

  6. G. Vezzu, J. L. Lopez, A. Freilich, and K. H. Becker, IEEE Trans. Plasma Sci. 37, 890 (2009).

    Article  ADS  Google Scholar 

  7. M. A. Malik, Plasma Chem. Plasma Process. 36, 737 (2016).

    Article  Google Scholar 

  8. V. N. Vasilets and A. B. Shekhter, in Plasma for Bio-Decontamination, Medicine and Food Security (NATO Science for Peace and Security Series A: Chemistry and Biology), Ed. by V. Zdenko, K. Hensel, and Yu. Akishev (Springer, Dordrecht, 2012), p. 393.

  9. T. Homola, R. Krumpolec, M. Zemánek, J. Kelar, P. Synek, T. Hoder, and M. Černák, Plasma Chem. Plasma Process. 37, 1149 (2017).

    Article  Google Scholar 

  10. H. M. Abourayana, V. Milosavljević, P. Dobbyn, and D. P. Dowling, Plasma Chem. Plasma Process. 37, 1223 (2017).

    Article  Google Scholar 

  11. S. Onsuratoom, R. Rujiravanit, T. Sreethawong, S. Tokura, and S. Chavadej, Plasma Chem. Plasma Process. 30, 191 (2010).

    Article  Google Scholar 

  12. C. L. Enloe, T. E. McLaughlin, R. D. van Dyken, K. D. Kachner, E. J. Jumper, T. C. Corke, M. Post, and O. Haddad, AIAA J. 42, 595 (2004).

    Article  ADS  Google Scholar 

  13. M. I. Lomaev, E. A. Sosnin, and V. F. Tarasenko, Prog. Quant. Electron. 36, 51 (2012).

    Article  ADS  Google Scholar 

  14. D. Florez, R. Diez, and H. Piquet, IEEE Trans. Plasma Sci. 44, 1160 (2016).

    Article  ADS  Google Scholar 

  15. G. Matafonova and V. Batoev, Chemosphere 89, 637 (2012).

    Article  ADS  Google Scholar 

  16. T. Kuroki, T. Oishi, T. Yamamoto, and M. Okubo, IEEE Trans. Ind. Appl. 49, 293 (2013).

    Article  Google Scholar 

  17. W. Bo, Plasma Chem. Plasma Process. 37, 1121 (2017).

    Article  Google Scholar 

  18. N. N. Misra, A. Martynenko, F. Chemat, L. Paniwnyk, F. J. Barba, and A. R. Jambrak, Crit. Rev. Food Sci. Nutrit. 41, 1 (2017).

    Google Scholar 

  19. Plasma for Bio-Decontamination, Medicine and Food Security (NATO Science for Peace and Security Series A: Chemistry and Biology), Ed. by V. Zdenko, K. Hensel, and Yu. Akishev (Springer, Dordrecht, 2012).

    Google Scholar 

  20. A. Fridman and G. Friedman. Plasma Medicine (Wiley, New York, 2013).

    Google Scholar 

  21. D. B. Graves, Phys. Plasmas 21, 080901 (2014).

    Article  ADS  Google Scholar 

  22. S. A. Ermolaeva, E. V. Sysolyatina, N. I. Kolkova, P. Bortsov, A. I. Tuhvatulin, M. M. Vasiliev, A. Y. Mukhachev, O. F. Petrov, S. Tetsuji, B. S. Naroditsky, G. E. Morfill, V. E. Fortov, A. I. Grigoriev, N. A. Zigangirova, and A. L. Gintsburg, J. Med. Microbiol. 61, 793 (2012).

    Article  Google Scholar 

  23. E. Sysolyatina, M. Vasiliev, M. Kurnaeva, I. Kornienko, O. Petrov, V. Fortov, A. Gintsburg, E. Petersen, and S. Ermolaeva, J. Phys. D 49, 294002 (2016).

    Article  Google Scholar 

  24. T. Sasaki, S. Hida, R. Ito, Y. Kondo, K. Takahashi, T. Kikuchi, N. Harada, and K. Ohnuma, IEEJ Trans. Fund. Mater. 137, 328 (2017).

    Article  Google Scholar 

  25. N. Yu. Babaeva and M. J. Kushner, Plasma Sources Sci. Technol. 23, 065047 (2014).

    Article  Google Scholar 

  26. N. Yu. Babaeva, W. Tian, and M. J. Kushner, J. Phys. D 47, 235201 (2014).

    Article  ADS  Google Scholar 

  27. W. Kowalski, Ultraviolet Germicidal Irradiation Handbook UVGI for Air and Surface Disinfection (Springer, Dordrecht, 2009).

    Book  Google Scholar 

  28. X. Lu, G. V. Naidis, M. Laroussi, S. Reuter, D. B. Graves, and K. Ostrikov, Phys. Rep. 630, 1 (2016).

    Article  MathSciNet  ADS  Google Scholar 

  29. A. Lin, N. Chernets, J. Han, Y. Alicea, D. Dobrynin, G. Fridman, T.A. Freeman, A. Fridman, and V. Miller, Plasma Process. Polym. 12, 1117 (2015).

    Article  Google Scholar 

  30. D. B. Graves, J. Phys. D 45, 263001 (2012).

    Article  ADS  Google Scholar 

  31. S. A. Ermolaeva, A. F. Varfolomeev, M. Yu. Chernukha, D. S. Yurov, M. M. Vasiliev, A. A. Kaminskaya, M. M. Moisenovich, J. M. Romanova, A. N. Murashev, I. I. Selezneva, T. Shimizu, E. V. Sysolyatina, I. A. Shaginyan, O. F. Petrov, E. I. Mayevsky, et al., J. Med. Microbiol. 60, 75 (2011).

    Article  Google Scholar 

  32. O. S. Zhdanova, V. S. Kuznetsov, V. A. Panarin, V. S. Skakun, E. A. Sosnin, and V. F. Tarasenko, Prikl. Fiz., No. 2, 36 (2016).

Download references

FUNDING

This work was supported by the Russian Academy of Sciences, program No. IV.4.10 “Fundamental Problems of Physical and Chemical Mechanics for ISS Experiments.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. M. Vasilyak, E. A. Deshevaya, V. Ya. Pecherkin or E. E. Son.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panov, V.A., Vasilyak, L.M., Vetchinin, S.P. et al. Inactivation of Microorganisms on Plane Surfaces by a Dielectric Barrier Discharge. Plasma Phys. Rep. 45, 517–521 (2019). https://doi.org/10.1134/S1063780X19050076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X19050076

Navigation