Skip to main content
Log in

Development of Discharge in a Saline Solution at Near-Threshold Voltages

  • Plasma Diagnostics
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The development of a discharge in a point−plane gap filled with a saline solution with a salt content of 3% was studied experimentally. The duration of the voltage pulse applied to the gap was about 2 ms. Data are presented on the formation dynamics of gas microcavities at near-threshold voltages at which gas-discharge plasma appears in some microcavities. The cavities are conglomerates of microbubbles with a typical size of ≈100 μm. At the threshold voltage (≈750 V), the active electrode is covered with a gas layer and the gap voltage is in fact applied to this layer, which leads to the development of discharges in individual microbubbles. In this case, the discharge operates in the form of short current pulses. The number of microcavities filled with plasma increases as the voltage grows above the threshold value. At the plasma boundary, new microbubbles are formed, in which discharges are ignited. As a result, the plasma front propagates from the active electrode into the gap with a characteristic velocity of 103 cm/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Bruggeman and C. Leys, J. Phys. D 42, 053001 (2009).

    Article  ADS  Google Scholar 

  2. K. R. Stalder, D. F. McMillen, and W. G. Graham, J. Phys. D 38, 1728 (2005).

    Article  ADS  Google Scholar 

  3. L. Schaper, K. R. Stalder, and W. G. Graham, Plasma Sources Sci. Technol. 20, 034004 (2011).

    Article  ADS  Google Scholar 

  4. L. Schaper, W. G. Graham, and K. R. Stalder, Plasma Sources Sci. Technol. 20, 034003 (2011).

    Article  ADS  Google Scholar 

  5. K. R. Stalder and J. Woloszko, Contrib. Plasma Phys. 47, 64 (2007).

    Article  ADS  Google Scholar 

  6. Y. D. Korolev, I. A. Shemyakin, R. V. Ivashov, V. S. Kasyanov, N. V. Landl, Y. H. Sun, T. Shao, and Y. Gao, J. Phys. Conf. Ser. 552, 012005 (2014).

    Article  Google Scholar 

  7. Yu. S. Akishev, M. E. Grushin, V. B. Karal’nik, A. E. Monich, M. V. Pan’kin, N. I. Trushkin, V. P. Kholodenko, V. A. Chugunov, N. A. Zhirkova, I. A. Irkhina, and E. N. Kobzev, Plasma Phys. Rep. 32, 1052 (2006).

    Article  ADS  Google Scholar 

  8. M. W. Ahmed, S. Choi, K. Lyakhov, U. Shaislamov, R. K. Mongre, D. K. Jeong, R. Suresh, and H. J. Lee, Plasma Phys. Rep. 43, 381 (2017).

    Article  ADS  Google Scholar 

  9. Y. C. Hong, H. J. Park, B. J. Lee, W. S. Kang, and H. S. Uhm, Phys. Plasmas 17, 053502 (2010).

    Article  ADS  Google Scholar 

  10. D. Oshita, S. H. R. Hosseini, K. Mawatari, S. M. Nejad, and H. Akiyama, IEEE Trans. Plasma Sci. 42, 3209 (2014).

    Article  ADS  Google Scholar 

  11. M. N. Akhmetov, N. D. Akhmetov, M. M. Gimadeev, and V. A. Krivosheev, Plasma Phys. Rep. 43, 393 (2017).

    Article  ADS  Google Scholar 

  12. Y. H. Sun, Y. X. Zhou, M. J. Jin, Q. Liu, and P. Yan, J. Electrost. 63, 969 (2005).

    Article  Google Scholar 

  13. A. L. Fan, Y. H. Sun, P. Yan, X. Z. Xu, R. Y. Fu, and K. Liu, in Proceedings of the 11th Conference on Industrial Electronics and Applications, Hefei, 2016, p. 2391.

    Google Scholar 

  14. D. I. Slovetskii and S. D. Terent’ev, High Energy Chem. 37, 310 (2003).

    Article  Google Scholar 

  15. Y. S. Akishev, V. Karalnik, M. Medvedev, A. Petryakov, N. Trushkin, and A. Shafikov, Eur. Phys. J. 79, 10803 (2017).

    Google Scholar 

  16. Y. S. Akishev, V. Karalnik, M. Medvedev, A. Petryakov, A. Shafikov, and N. Trushkin, Plasma Sources Sci. Technol. 26, 025004 (2017).

    Article  ADS  Google Scholar 

  17. Y. Akishev, F. Arefi-Khonsari, A. Demir, M. Grushin, V. Karalnik, A. Petryakov, and N. Trushkin, Plasma Sources Sci. Technol. 24, 065021 (2015).

    Article  ADS  Google Scholar 

  18. N. Y. Babaeva and M. J. Kushner, J. Phys. D 42, 132003 (2009).

    Article  ADS  Google Scholar 

  19. V. A. Panov, L. M. Vasilyak, S. P. Vetchinin, V. Y. Pecherkin, and E. E. Son, Plasma Phys. Rep. 42, 1074 (2016).

    Article  ADS  Google Scholar 

  20. E. E. Son, A. F. Gaisin, M. A. Leushka, F. M. Gaisin, and R. S. Sadriev, High Temp. 54, 26 (2016).

    Article  Google Scholar 

  21. Y. D. Korolev, G. A. Mesyats, and A. M. Yarosh, High Energy Chem. 21, 389 (1987).

    Google Scholar 

  22. Y. D. Korolev and I. B. Matveev, IEEE Trans. Plasma Sci. 34, 2507 (2006).

    Article  ADS  Google Scholar 

  23. Y. D. Korolev, O. B. Frants, N. V. Landl, and A. I. Suslov, IEEE Trans. Plasma Sci. 40, 2837 (2012).

    Article  ADS  Google Scholar 

  24. Yu. D. Korolev, O. B. Frants, V. O. Nekhoroshev, A. I. Suslov, V. S. Kas’yanov, I. A. Shemyakin, and A. V. Bolotov, Plasma Phys. Rep. 42, 592 (2016).

    Article  ADS  Google Scholar 

  25. K. Tachibana, Y. Takekata, Y. Mizumoto, H. Motomura, and M. Jinno, Plasma Sources Sci. Technol. 20, 034005 (2011).

    Article  ADS  Google Scholar 

  26. A. Y. Nikiforov, C. Leys, L. Li, L. Nemcova, and F. Krcma, Plasma Sources Sci. Technol. 20, 034008 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. D. Korolev.

Additional information

Original Russian Text © Yu.D. Korolev, I.A. Shemyakin, V.S. Kasyanov, V.G. Geyman, A.V. Bolotov, V.O. Nekhoroshev, 2018, published in Fizika Plazmy, 2018, Vol. 44, No. 6, pp. 507–513.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korolev, Y.D., Shemyakin, I.A., Kasyanov, V.S. et al. Development of Discharge in a Saline Solution at Near-Threshold Voltages. Plasma Phys. Rep. 44, 581–587 (2018). https://doi.org/10.1134/S1063780X18060053

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X18060053

Navigation