Skip to main content
Log in

Influence of the Distributed Phase of Gas Bubbles on a Pulsed Electrical Discharge in Water

  • Applied Physics
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The development of a pulsed electrical discharge in water with vapor–air microbubbles, the volume distribution of which in water is close to uniform, has been studied experimentally. The presence of volumetric microbubbles with an average diameter of ~50 μm and a bulk gas content of no more than 1% does not change the thermal mechanism of the development of the discharge in water with a conductivity of ~300 μS/cm at overvoltages of 1–1.5, the minimum breakdown voltage being ~9 kV. Under these conditions, the determining role is played by the surface bubbles, which change the observed mechanism of the discharge development. The discharge is initiated in the surface bubbles simultaneously on both electrodes. The growth of the cathode channel at a velocity of ~60 m/s leads to the closure of the 1-cm-long gap during a time of ~160 μs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Bruggeman and C. Leys, J. Phys. D 42, 053001 (2009).

    Article  ADS  Google Scholar 

  2. J. E. Foster, Phys. Plasmas 24, 055501 (2017).

    Article  ADS  Google Scholar 

  3. N. Y. Babaeva and M. J. Kushner, IEEE Trans. Plasma Sci. 36, 892 (2008).

    Article  ADS  Google Scholar 

  4. N. Yu. Babaeva and M. J. Kushner, J. Phys. D 42, 132003 (2009).

    Article  ADS  Google Scholar 

  5. N. Yu. Babaeva, D. V. Tereshonok, and G. V. Naidis, J. Phys. D 48, 355201 (2015).

    Article  Google Scholar 

  6. N. Yu. Babaeva, G. V. Naidis, D. V. Tereshonok, and B. M. Smirnov, J. Phys. D 50, 364001 (2017).

    Article  Google Scholar 

  7. N. Yu. Babaeva, G. V. Naidis, D. V. Tereshonok, and B. M. Smirnov, J. Phys. Conf. Ser. 774, 012151 (2016).

    Article  Google Scholar 

  8. S. Gershman and A. Belkind, Eur. Phys. J. D 60, 661 (2010).

    Article  ADS  Google Scholar 

  9. A. Hamdan and M. S. Cha, IEEE Trans. Plasma Sci. 44, 2988 (2016).

    Article  ADS  Google Scholar 

  10. V. A. Panov, L. M. Vasilyak, S. P. Vetchinin, V. Ya. Pecherkin, and E. E. Son, J. Phys. D 49, 385202 (2016).

    Article  ADS  Google Scholar 

  11. V. A. Panov, L. M. Vasilyak, V. Ya. Pecherkin, S. P. Vetchinin, Yu. M. Kulikov, and E. E. Son, J. Phys. Conf. Ser. 653, 012157 (2015).

    Article  Google Scholar 

  12. L. M. Vasilyak, S. P. Vetchinin, V. A. Panov, V. Ya. Pecherkin, and E. E. Son, Plasma Phys. Rep. 42, 301 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Panov.

Additional information

Original Russian Text © V.A. Panov, L.M. Vasilyak, S.P. Vetchinin, V.Ya. Pecherkin, A.S. Saveliev, 2017, published in Prikladnaya Fizika, 2017, No. 5, pp. 5–9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panov, V.A., Vasilyak, L.M., Vetchinin, S.P. et al. Influence of the Distributed Phase of Gas Bubbles on a Pulsed Electrical Discharge in Water. Plasma Phys. Rep. 44, 882–885 (2018). https://doi.org/10.1134/S1063780X1809009X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X1809009X

Navigation