Skip to main content
Log in

Nonlinear Right-Hand Polarized Wave in Plasma in the Electron Cyclotron Resonance Region

  • Nonlinear Phenomena
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The propagation of a nonlinear right-hand polarized wave along an external magnetic field in subcritical plasma in the electron cyclotron resonance region is studied using numerical simulations. It is shown that a small-amplitude plasma wave excited in low-density plasma is unstable against modulation instability with a modulation period equal to the wavelength of the excited wave. The modulation amplitude in this case increases with decreasing detuning from the resonance frequency. The simulations have shown that, for large-amplitude waves of the laser frequency range propagating in plasma in a superstrong magnetic field, the maximum amplitude of the excited longitudinal electric field increases with the increasing external magnetic field and can reach 30% of the initial amplitude of the electric field in the laser wave. In this case, the energy of plasma electrons begins to substantially increase already at magnetic fields significantly lower than the resonance value. The laser energy transferred to plasma electrons in a strong external magnetic field is found to increase severalfold compared to that in isotropic plasma. It is shown that this mechanism of laser radiation absorption depends only slightly on the electron temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. E. Andreev, L. M. Gorbunov, V. I. Kirsanov, A. A. Pogosova, and R. R. Ramazashvili, JETP Lett. 55, 571 (1992).

    ADS  Google Scholar 

  2. P. Sprangle, E. Esarey, J. Krall, and G. Joyce, Phys. Rev. Lett. 69, 2200 (1992).

    Article  ADS  Google Scholar 

  3. T. M. Antonsen and P. Mora, Phys. Fluids B 5, 1440 (1993).

    Article  ADS  Google Scholar 

  4. N. E. Andreev, V. I. Kirsanov, A. A. Pogosova, and L. M. Gorbunov, JETP Lett. 60, 713 (1994).

    ADS  Google Scholar 

  5. E. Esarey, J. Krall, and P. Sprangle, Phys. Rev. Lett. 72, 2887 (1994).

    Article  ADS  Google Scholar 

  6. M. Tatarakis, A. Gopal, I. Watts, F. N. Beg, A. E. Dangor, K. Krushelnik, U. Wagner, P. A. Norreus, E. L. Clark, M. Zepf, and R. G. Evans, Phys. Plasmas 9, 2244 (2002).

    Article  ADS  Google Scholar 

  7. S. Fujioka, Z. Zhang, K. Ishihara, K. Shigemori, Y. Hironaka, T. Johzaki, A. Sunahara, N. Yamamoto, H. Nakashima, T. Watanabe, H. Shiraga, H. Nishimura, and H. Azechi, Sci. Rep. 3, 1170 (2013).

    Article  ADS  Google Scholar 

  8. U. A. Mofiz, Phys. Rev. A 40, 6752 (1989).

    Article  ADS  Google Scholar 

  9. P. K. Shukla, Phys. Fluids B 5, 3088 (1993).

    Article  ADS  Google Scholar 

  10. W. Feng, J. Q. Li, and Y. Kishimoto, Phys. Plasmas 23, 032102 (2016).

    Article  ADS  Google Scholar 

  11. W. Feng, J. Q. Li, and Y. Kishimoto, Phys. Plasmas 23, 092115 (2016).

    Article  ADS  Google Scholar 

  12. D. Farina, M. Lontano, and S. Bulanov, Phys. Rev. E 62, 4146 (2000).

    Article  ADS  Google Scholar 

  13. D. V. Krasovitskii, Sov. J. Plasma Phys. 12, 809 (1986).

    Google Scholar 

  14. V. B. Krasovitskii and V. V. Prudskikh, Plasma Phys. Rep. 20, 505 (1994).

    ADS  Google Scholar 

  15. D. I. Dzhavakhishvili and N. L. Tsintsadze, Sov. Phys. JETP 37, 666 (1973).

    ADS  Google Scholar 

  16. A. F. Alexandrov, L. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics (Vysshaya Shkola, Moscow, 1978; Springer-Verlag, Berlin, 1984).

    Book  Google Scholar 

  17. Ch. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation (McGraw-Hill, New York, 1985).

    Google Scholar 

  18. S. V. Bulanov, I. N. Inovenkov, V. I. Kirsanov, N. M. Naumova, and A. S. Sakharov, Phys. Fluids B 4, 1935 (1992).

    Article  ADS  Google Scholar 

  19. V. B. Krasovitskii and V. A. Turikov, Plasma Phys. Rep. 36, 1023 (2010).

    Article  ADS  Google Scholar 

  20. S. V. Bulanov, V. A. Vshivkov, G. I. Dudnikova, T. Zh. Esirkepov, F. Kalifano, F. F. Kamenets, T. V. Liseikina, N. M. Naumova, and F. Pegoraro, Plasma Phys. Rep. 25, 701 (1999).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Krasovitskiy.

Additional information

Original Russian Text © V.B. Krasovitskiy, V.A. Turikov, 2018, published in Fizika Plazmy, 2018, Vol. 44, No. 5, pp. 440–446.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasovitskiy, V.B., Turikov, V.A. Nonlinear Right-Hand Polarized Wave in Plasma in the Electron Cyclotron Resonance Region. Plasma Phys. Rep. 44, 507–513 (2018). https://doi.org/10.1134/S1063780X18050082

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X18050082

Navigation