Skip to main content
Log in

Second-harmonic generation of a linearly polarized laser pulse propagating through magnetized plasma in the presence of a planar magnetostatic wiggler

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

This paper presents the second-harmonic generation of a linearly polarized laser pulse propagating through magnetized plasma embedded in a planar magnetostatic wiggler. Using the perturbation theory, the dispersion relation and non-linear current density of the laser-plasma interaction have been derived in the presence of the wiggler field. Moreover, the conversion efficiency and the amplitude of the phase mismatch for the second harmonic have been obtained. Numerical results indicate that the second-harmonic conversion efficiency significantly increases with increasing the wiggler strength. Furthermore, it is seen that the peak of the second-harmonic conversion efficiency has an increasing trend with respect to the increase in the wiggler strength. In addition, it is found that increasing the plasma frequency (or plasma density), the peak of the second-harmonic conversion efficiency gradually increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.W. Klein, M. Wegener, N. Feth, S. Linden, Opt. Express 15, 5238 (2007)

    Article  ADS  Google Scholar 

  2. C.-K. Sun, S.-W. Chu, S.-P. Tai, S. Keller, U.K. Mishra, S.P. DenBaars, Appl. Phys. Lett. 77, 2331 (2000)

    Article  ADS  Google Scholar 

  3. D. Coquillat, G. Vecchi, C. Comaschi, A.M. Malvezzi, J. Torres, M. Le Vassor d’Yerville, Appl. Phys. Lett. 87, 101106 (2005)

    Article  ADS  Google Scholar 

  4. J.T. Mendonça, B. Thidé, H. Then, Phys. Rev. Lett. 102, 185005 (2009)

    Article  ADS  Google Scholar 

  5. P. Shukla, B. Eliasson, Phys. Rev. Lett. 92, 073601 (2004)

    Article  ADS  Google Scholar 

  6. A. Paknezhad, D. Dorranian, Phys. Plasmas 20, 092108 (2013)

    Article  ADS  Google Scholar 

  7. N. Esmaeildoost, S. Zolghadr, S. Jafari, J. Appl. Phys. 121, 113106 (2017)

    Article  ADS  Google Scholar 

  8. R. Morandotti, H. Eisenberg, Y. Silberberg, M. Sorel, J. Aitchison, Phys. Rev. Lett. 86, 3296 (2001)

    Article  ADS  Google Scholar 

  9. M. Jafari, M. Jafari Milani, A. Niknam, Phys. Plasmas 23, 073119 (2016)

    Article  ADS  Google Scholar 

  10. I. Solodov, J. Wackerl, K. Pfleiderer, G. Busse, Appl. Phys. Lett. 84, 5386 (2004)

    Article  ADS  Google Scholar 

  11. N. Kumar, A. Pukhov, K. Lotov, Phys. Rev. Lett. 104, 255003 (2010)

    Article  ADS  Google Scholar 

  12. R.l. Kodama, H. Shiraga, K. Shigemori, Y. Toyama, S. Fujioka, H. Azechi, H. Fujita, H. Habara, T. Hall, Y. Izawa, Nature 418, 933 (2002)

    Article  ADS  Google Scholar 

  13. M. Dunne, Nat. Phys. 2, 2 (2006)

    Article  Google Scholar 

  14. R. Paschotta, Encyclopedia of Laser Physics and Technology (Wiley-VCH, 2008)

  15. D. Wiersma, Nature 406, 132 (2000)

    Article  Google Scholar 

  16. R.C. Elton, X-ray Lasers (Elsevier, 2012)

  17. Y.A. Wang, M. Larotonda, B. Luther, D. Alessi, M. Berrill, V. Shlyaptsev, J. Rocca, Phys. Rev. A 72, 053807 (2005)

    Article  ADS  Google Scholar 

  18. J. Dunn, Y. Li, A. Osterheld, J. Nilsen, J. Hunter, V. Shlyaptsev, Phys. Rev. Lett. 84, 4834 (2000)

    Article  ADS  Google Scholar 

  19. B. Zohuri, in Inertial Confinement Fusion Driven Thermonuclear Energy (Springer, 2017) pp. 193--238

  20. L.J. Perkins, R. Betti, K. LaFortune, W. Williams, Phys. Rev. Lett. 103, 045004 (2009)

    Article  ADS  Google Scholar 

  21. M. Borghesi, A. Schiavi, D. Campbell, M. Haines, O. Willi, A. MacKinnon, L. Gizzi, M. Galimberti, R. Clarke, H. Ruhl, Plasma Phys. Control. Fusion 43, A267 (2001)

    Article  ADS  Google Scholar 

  22. S. Jafari, M. Nilkar, A. Ghasemizad, H. Mehdian, Phys. Plasmas 21, 104503 (2014)

    Article  ADS  Google Scholar 

  23. R.W. Boyd, Nonlinear Optics (Academic Press, 2003)

  24. P. Jha, R.K. Mishra, G. Raj, A.K. Upadhyay, Phys. Plasmas 14, 053107 (2007)

    Article  ADS  Google Scholar 

  25. P. Sharma, R. Sharma, Phys. Plasmas 19, 122106 (2012)

    Article  ADS  Google Scholar 

  26. M. Ghorbanalilu, Laser Part. Beams 30, 291 (2012)

    Article  ADS  Google Scholar 

  27. J. Rax, J. Robiche, I. Kostyukov, Phys. Plasmas 7, 1026 (2000)

    Article  ADS  Google Scholar 

  28. H.A. Salih, V.K. Tripathi, B.K. Pandey, IEEE Trans. Plasma Sci. 31, 324 (2003)

    Article  ADS  Google Scholar 

  29. S.-Y. Chen, A. Maksimchuk, E. Esarey, D. Umstadter, Phys. Rev. Lett. 84, 5528 (2000)

    Article  ADS  Google Scholar 

  30. P. Gibbon, IEEE J. Quantum Electron. 33, 1915 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jafari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abedi-Varaki, M., Jafari, S. Second-harmonic generation of a linearly polarized laser pulse propagating through magnetized plasma in the presence of a planar magnetostatic wiggler. Eur. Phys. J. Plus 133, 137 (2018). https://doi.org/10.1140/epjp/i2018-11975-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-11975-2

Navigation