Skip to main content
Log in

Simulation of the Plasma Density Evolution during Electron Cyclotron Resonance Heating at the T-10 Tokamak

  • Tokamaks
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

In ohmically heated (OH) plasma with low recycling, an improved particle confinement (IPC) mode is established during gas puffing. However, after gas puffing is switched off, this mode is retained only for about 100 ms, after which an abrupt phase transition into the low particle confinement (LPC) mode occurs in the entire plasma cross section. During such a transition, energy transport due to heat conduction does not change. The phase transition in OH plasma is similar to the effect of density pump-out from the plasma core, which occurs after electron cyclotron heating (ECH) is switched on. Analysis of the measured plasma pressure profiles in the T-10 tokamak shows that, after gas puffing in the OH mode is switched off, the plasma pressure profile in the IPC stage becomes more peaked and, after the peakedness exceeds a certain critical value, the IPC-LPC transition occurs. Similar processes are also observed during ECH. If the pressure profile is insufficiently peaked during ECH, then the density pump-out effect comes into play only after the critical peakedness of the pressure profile is reached. In the plasma core, the density and pressure profiles are close to the corresponding canonical profiles. This allows one to derive an expression for the particle flux within the canonical profile model and formulate a criterion for the IPC-LPC transition. The time evolution of the plasma density profile during phase transitions was simulated for a number of T-10 shots with ECH and high recycling. The particle transport coefficients in the IPC and LPC phases, as well as the dependences of these coefficients on the ECH power, are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Angioni, E. Fable, M. Greenwald, M. Maslov, A. G. Peeters, H. Takenaga, and H. Weisen, Plasma Phys. Controlled Fusion 30, 124017 (2009).

    Article  ADS  Google Scholar 

  2. C. Angioni, A. G. Peeters, X. Garbet, A. Manini, F. Ryter, and ASDEX Upgrade Team, Nucl. Fusion 44, 827 (2004).

    Article  ADS  Google Scholar 

  3. M. Romanelli, V. Parail, P. Silva Aresta Belo, G. Corrigan, L. Garzotti, D. Harting, F. Koechl, E. Militello-Asp, R. Ambrosino, M. Cavinato, A. Kukushkin, A. Loarte, M. Mattei, and R. Sartori, Nucl. Fusion 55, 093008 (2015).

    Article  ADS  Google Scholar 

  4. B. Baiocci, C. Bourdelle, C. Angioni, F. Imbeaux, A. Loarte, M. Maslov, and JET contributors, Nucl. Fusion 55, 123001 (2015).

    Article  ADS  Google Scholar 

  5. S. Mordijck, X. Wang, E. J. Doyle, T. L. Rhode, L. Schmitz, L. Zeng, G. M. Staebler, C. C. Petty, R. J. Groebner, W.-H. Ko, B. A. Grierson, W. M. Solomon, T. Tala, A. Salmi, C. Chrystal, et al., Nucl. Fusion 55, 113025 (2015).

    Article  ADS  Google Scholar 

  6. B. Coppi, Comm. Plasma Phys. Controlled Fusion 5, 261 (1980).

    Google Scholar 

  7. B. B. Kadomtsev, Sov. J. Plasma Phys. 13, 443 (1987).

    Google Scholar 

  8. D. Biskamp, Comm. Plasma Phys. Controlled Fusion 10, 165 (1986).

    Google Scholar 

  9. J. Y. Hsu and M. S. Chu, Phys. Fluids 30, 1221 (1987).

    Article  ADS  Google Scholar 

  10. Yu. N. Dnestrovskij and G. V. Pereverzev, Plasma Phys. Controlled Fusion 30, 1417 (1988).

    Article  ADS  Google Scholar 

  11. Yu. N. Dnestrovskij, A. Yu. Dnestrovskij, S. E. Lysenko, and S. V. Cherkasov, Plasma Phys. Rep. 28, 887 (2002).

    Article  ADS  Google Scholar 

  12. Yu. N. Dnestrovskij, J. W. Connor, S. V. Cherkasov, A. V. Danilov, A. Yu. Dnestrovskij, S. E. Lysenko, C. M. Roach, and M. Walsh, Plasma Phys. Controlled Fusion 49, 1477 (2007).

    Article  ADS  Google Scholar 

  13. Yu. N. Dnestrovskij, Self-Organization of Hot Plasmas: The Canonical Profile Transport Model (Springer, New York, 2015).

    Book  Google Scholar 

  14. K. S. Dyabilin and K. A. Razumova, Plasma Phys. Rep. 41, 685 (2015).

    Article  ADS  Google Scholar 

  15. V. A. Vershkov, M. A. Borisov, G. F. Subbotin, D. A. Shelukhin, Yu. N. Dnestrovskii, A. V. Danilov, S. V. Cherkasov, E. P. Gorbunov, D. S. Sergeev, S. A. Grashin, S. V. Krylov, E. O. Kuleshin, T. B. Myalton, Yu. V. Skosyrev, and V. V. Chistiakov, Nucl. Fusion 53, 083014 (2013).

    Article  ADS  Google Scholar 

  16. V. A. Vershkov, D. A. Shelukhin, G. F. Subbotin, Yu. N. Dnestrovskij, A. V. Danilov, A. V. Melnikov, L. G. Eliseev, S. G. Maltsev, E. P. Gorbunov, D. S. Sergeev, S. V. Krylov, T. B. Myalton, D. V. Ryzhakov, V. M. Trukhin, V. V. Chistiakov, et al., Nucl. Fusion 55, 063014 (2015).

    Article  ADS  Google Scholar 

  17. Yu. N. Dnestrovskij, V. A. Vershkov, A. V. Danilov, A.Yu. Dnestrovskij, V. N. Zenin, S. E. Lysenko, A. V. Melnikov, D. A. Shelukhin, G. F. Subbotin, and S. V. Cherkasov, Plasma Phys. Rep. 42, 191 (2016).

    Article  ADS  Google Scholar 

  18. V. F. Andreev, A. A. Borschegovskij, V. V. Chistyakov, Yu. N. Dnestrovskij, E. P. Gorbunov, N. V. Kasyanova, S. E. Lysenko, A. V. Melnikov, T. B. Myalton, I. N. Roy, D. S. Sergeev, and V. N. Zenin, Plasma Phys. Controlled Fusion 58, 055008 (2016).

    Article  ADS  Google Scholar 

  19. V. M. Leonov, V. G. Merejkin, V. S. Mukhovatov, and V. V. Sannirov, in Proceedings of the 10th European Conference on Controlled Fusion and Plasma Physics, Moscow, 1981, Report A-17.

    Google Scholar 

  20. V. A. Vershkov, D. K. Vukolov, E. O. Kuleshin, and A. A. Medvedev, Vopr. At. Nauki. Tekh., Ser. Termoyad. Sintez, No. 4, 80 (2012).

    Google Scholar 

  21. A. V. Melnikov, L. G. Eliseev, S. V. Perfilov, V. F. Andreev, S. A. Grashin, K. S. Dyabilin, A. N. Chudnovskiy, M. Yu. Isaev, S. E. Lysenko, V. A. Mavrin, M. I. Mikhailov, D. V. Ryzhakov, R. V. Shurygin, V. N. Zenin, and the T-10 Team, Nucl. Fusion 53, 093019 (2013).

    Article  ADS  Google Scholar 

  22. A. V. Melnikov, L. I. Krupnik, L. G. Eliseev, J. M. Barcala, A. Bravo, A. A. Chmyga, G. N. Deshko, M. A. Drabinskij, C. Hidalgo, P. O. Khabanov, S. M. Khrebtov, N. K. Kharchev, A. D. Komarov, A. S. Kozachek, J. Lopez, et al., Nucl. Fusion 57, 072004 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Dnestrovskij.

Additional information

Original Russian Text © Yu.N. Dnestrovskij, V.A. Vershkov, A.V. Danilov, A.Yu. Dnestrovskij, V.N. Zenin, S.E. Lysenko, A.V. Melnikov, D.A. Shelukhin, G.F. Subbotin, S.V. Cherkasov, 2018, published in Fizika Plazmy, 2018, Vol. 44, No. 1, pp. 3–20.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dnestrovskij, Y.N., Vershkov, V.A., Danilov, A.V. et al. Simulation of the Plasma Density Evolution during Electron Cyclotron Resonance Heating at the T-10 Tokamak. Plasma Phys. Rep. 44, 1–17 (2018). https://doi.org/10.1134/S1063780X18010051

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X18010051

Navigation