Skip to main content
Log in

Transition into the improved core confinement mode as a possible mechanism for additional electron heating observed in the lower hybrid current drive experiments at the FT-2 tokamak

  • Tokamaks
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

In experiments on lower hybrid current drive (LHCD) carried out at the FT-2 tokamak, a substantial increase in the central electron temperature T e (r = 0 cm) from 550 to 700 eV was observed. A complex simulation procedure is used to explain a fairly high LHCD efficiency and the observed additional heating, which can be attributed to a transition into the improved core confinement (ICC) mode. For numerical simulations, data obtained in experiments with deuterium plasma at 〈n e 〉 = 1.6 × 1019 m–3 were used. Simulations by the GRILL3D, FRTC, and ASTRA codes have shown that the increase in the density and central temperature is apparently caused by a significant suppression of heat transport in the electron component. The mechanism for transition into the improved confinement mode at r < 3 cm can be associated with the broadening of the plasma current channel due to the lower hybrid drive of the current carried by superthermal and runaway electrons. In this case, the magnetic shear s = (r/q)(dq/dr) in the axial region of the plasma column almost vanishes during the RF pulse. In this study, the effect of lower hybrid waves on the plasma parameters, resulting in a transition into the ICC mode, is considered. New experimental and calculated data are presented that evidence in favor of such a transition. Special attention is paid to the existence of a threshold for the transition into the ICC mode in deuterium plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Baranov, V. Basiuk, G. Calabro, A. Cardinali, C. Castaldo, R. Cesario, J. Decker, D. Dodt, A. Ekedahl, L. Figini, J. Garcia, G. Giruzzi, J. Hillairet, G. T. Hoang, A. Hubbard, et al., Plasma Phys. Controlled Fusion 52, 124031 (2010).

    Article  ADS  Google Scholar 

  2. X. Litaudon, Y. Peysson, T. Aniel, G. Huysmans, F. Imbeaux, E. Joffrin, J. Lasalle, P. Lotte, B. Schunke, J. L. Segui, G. Tresset, and M. Zabiego, Plasma Phys. Controlled Fusion 43, 677 (2001).

    Article  ADS  Google Scholar 

  3. T. J. J. Tala, J. A. Heikkinen, V. V. Parail, Y. F. Baranov, and S. J. Karttunen, Plasma Phys. Controlled Fusion 43, 507 (2001).

    Article  ADS  Google Scholar 

  4. S. I. Lashkul, A. B. Altukhov, A. D. Gurchenko, V. V. D’yachenko, L. A. Esipov, M. Yu. Kantor, D. V. Kuprienko, M. A. Irzak, A. N. Saveliev, A. V. Sidorov, A. Yu. Stepanov, and S. V. Shatalin, Plasma Phys. Rep. 36, 751 (2010).

    Article  ADS  Google Scholar 

  5. S. I. Lashkul, A. B. Altukhov, A. D. Gurchenko, E. Z. Gusakov, V. V. D’yachenko, L. A. Esipov, M. A. Irzak, M. Yu. Kantor, D. V. Kuprienko, A. N. Saveliev, A. Yu. Stepanov, and S. V. Shatalin, Plasma Phys. Rep. 41, 990 (2015).

    Article  ADS  Google Scholar 

  6. A. E. Shevelev, E. M. Khilkevitch, S. I. Lashkul, V. V. Rozhdestvensky, A. B. Altukhov, I. N. Chugunov, D. N. Doinikov, L. A. Esipov, D. B. Gin, M. V. Iliasova, V. O. Naidenov, N. S. Nersesyan, I. A. Polunovsky, A. V. Sidorov, and V. G. Kiptily, Nucl. Instrum. Meth. Phys. Res. A 830, 102 (2016).

    Article  ADS  Google Scholar 

  7. Y. Peysson and the TORE SUPRA Team, Plasma Phys. Controlled Fusion 42, B87 (2000).

    Article  ADS  Google Scholar 

  8. V. Pericoli Ridolfini, G. Calabro, L. Panaccione, FTU team, and ECH team, Nucl. Fusion 45, 1386 (2005).

    Article  ADS  Google Scholar 

  9. S. V. Mirnov, Physical Processes in Tokamak Plasmas (Energoatomizdat, Moscow, 1985) [in Russian].

    Google Scholar 

  10. S. I. Lashkul, A. B. Altukhov, V. V. D’yachenko, L. A. Esipov, M. Yu. Kantor, D. V. Kuprienko, A. D. Lebedev, Ya. A. Nikerman, and A. Yu. Popov, Plasma Phys. Rep. 38, 851 (2012).

    Article  ADS  Google Scholar 

  11. S. I. Lashkul, A. B. Altukhov, A. D. Gurchenko, E.Z. Gusakov, V. V. Dyachenko, L. A. Esipov, M. Yu. Kantor and D. V. Kouprienko, in Proceedings of the 42nd EPS Conference on Plasma Physics, Lisbon, 2015, ECA 39E, P5.173 (2015).

    Google Scholar 

  12. M. A. Irzak and O. N. Shcherbinin, Nucl. Fusion 35, 1341 (1995).

    Article  ADS  Google Scholar 

  13. D. Piliya and A. N. Saveliev, Preprint JET_R(98) 01 (JET Joint Undertaking, Abingdon, 1998).

    Google Scholar 

  14. F. Romanelli and F. Zonca, Phys. Fluids B 5, 4081 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Lashkul.

Additional information

Original Russian Text © S.I. Lashkul, A.B. Altukhov, A.D. Gurchenko, E.Z. Gusakov, V.V. Dyachenko, L.A. Esipov, M.A. Irzak, M.Yu. Kantor, D.V. Kouprienko, A.A. Perevalov, A.N. Saveliev, A.Yu. Stepanov, S.V. Shatalin, 2017, published in Fizika Plazmy, 2017, Vol. 43, No. 7, pp. 593–601.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lashkul, S.I., Altukhov, A.B., Gurchenko, A.D. et al. Transition into the improved core confinement mode as a possible mechanism for additional electron heating observed in the lower hybrid current drive experiments at the FT-2 tokamak. Plasma Phys. Rep. 43, 711–719 (2017). https://doi.org/10.1134/S1063780X1707008X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X1707008X

Navigation