Skip to main content
Log in

Ion-acoustic supersolitons and double layers in plasmas with nonthermal electrons

  • Nonlinear Phenomena
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Supersoliton (SS) can be mainly featured in two ways, namely, by focusing on subsidiary maxima on its electric field or by meeting the requirement that the appropriate Sagdeev pseudopotential (SP) has three local extrema between the equilibrium conditions and its amplitude. In this paper, by using the SP method, double layers and ion-acoustic SSs are studied in a plasma with Maxwellian cold electrons, nonthermal hot electrons, and fluid ions. The existence of the SS regime in parameter space is obtained in a methodical fashion. The existence domains for positive solitary waves are also presented. It is found that there is no SSs at the acoustic speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. E. Dubinov and D. Yu. Kolotkov, Plasma Phys. Rep. 38, 909 (2012).

    Article  ADS  Google Scholar 

  2. A. E. Dubinov and D. Yu. Kolotkov, IEEE Trans. Plasma Sci. 40, 1429 (2012).

    Article  ADS  Google Scholar 

  3. A. E. Dubinov and D. Yu. Kolotkov, High Energy Chem. 46, 349 (2012).

    Article  Google Scholar 

  4. S. S. Ghosh and A. N. Sekar Iyengar, Phys. Plasmas 21, 082104 (2014).

    Article  ADS  Google Scholar 

  5. F. Verheest, M. A. Hellberg, and I. Kourakis, Phys. Plasmas 20, 082309 (2013).

    Article  ADS  Google Scholar 

  6. F. Verheest, M. A. Hellberg, and I. Kourakis, Phys. Plasmas 20, 012302 (2013).

    Article  ADS  Google Scholar 

  7. F. Verheest and M. A. Hellberg, Phys. Plasmas 22, 012301 (2015).

    Article  ADS  Google Scholar 

  8. F. Verheest, M. A. Hellberg, and I. Kourakis, Phys. Rev. E 87, 043107 (2013).

    Article  ADS  Google Scholar 

  9. T. K. Baluku, M. A. Hellberg, and F. Verheest, Europhys. Lett. 91, 15001 (2010).

    Article  ADS  Google Scholar 

  10. F. Verheest, Phys. Plasmas 18, 083701 (2011).

    Article  ADS  Google Scholar 

  11. A. Das, A. Bandyopadhyay, and K. P. Das, J. Plasma Phys. 78, 149 (2012).

    Article  ADS  Google Scholar 

  12. R. A. Cairns, A. A. Mamun, R. Bingham, R. Boström, R. O. Dendy, C. M. C. Nairn, and P. K. Shukla, Geophys. Res. Lett. 22, 2709 (1995).

    Article  ADS  Google Scholar 

  13. F. Verheest and S. R. Pillay, Phys. Plasmas 15, 013703 (2008).

    Article  ADS  Google Scholar 

  14. S. K. Maharaj, R. Bharuthram, S. V. Singh, and G. S. Lakhina, Phys. Plasmas 20, 083705 (2013).

    Article  ADS  Google Scholar 

  15. S. S. Ghosh and A. N. Sekar Iyengar, Phys. Plasmas 21, 082104 (2014)

    Article  ADS  Google Scholar 

  16. C. P. Olivier, S. K. Maharaj, and R. Bharuthram, Phys. Plasmas 22, 082312 (2015).

    Article  ADS  Google Scholar 

  17. O. R. Rufai, R. Bharuthram, S. V. Singh, and G. S. Lakhina, Phys. Plasmas 21, 082304 (2014).

    Article  ADS  Google Scholar 

  18. O. R. Rufai, Phys. Plasmas 22, 052309 (2015).

    Article  ADS  Google Scholar 

  19. F. Verheest, G. S. Lakhina, and M. A. Hellberg, Phys. Plasmas 21, 062303 (2014).

    Article  ADS  Google Scholar 

  20. G. S. Lakhina, S. V. Singh, and A. P. Kakad, Phys. Plasmas 21, 062311 (2014).

    Article  ADS  Google Scholar 

  21. S. V. Singh and G. S. Lakhina, Nonlin. Processes Geophys. 11, 275 (2004).

    Article  ADS  Google Scholar 

  22. F. Verheest, Phys. Plasmas 16, 013704 (2009).

    Article  ADS  Google Scholar 

  23. A. A. Mamun, R. A. Cairns, and P. K. Shukla, Phys. Plasmas 3, 702 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  24. R. Roychoudhury and S. Mukherjee, Phys. Plasmas 4, 2305 (1997).

    Article  ADS  Google Scholar 

  25. Z. X. Wang, X. G. Wang, L. W. Ren, J. Y. Liu, and Y. Liu, Phys. Lett. A 339, 96 (2005).

    Article  ADS  Google Scholar 

  26. S. V. Singh and G. S. Lakhina, Commun. Nonlin. Sci. Numer. Simulat. 23, 274 (2015).

    Article  ADS  Google Scholar 

  27. T. K. Baluku and M. A. Hellberg, Plasma Phys. Controlled Fusion 53, 095007 (2011).

    Article  ADS  Google Scholar 

  28. T. K. Baluku, M. A. Hellberg, I. Kourakis, and N. S. Saini, Phys. Plasmas 17, 053702 (2010).

    Article  ADS  Google Scholar 

  29. F. Verheest and M. A. Hellberg, Phys. Plasmas 17, 102312 (2010).

    Article  ADS  Google Scholar 

  30. F. Verheest, M. A. Hellberg, and T. K. Baluku, Phys. Plasmas 19, 032305 (2012).

    Article  ADS  Google Scholar 

  31. S. Baboolal, R. Bharuthram, and M. A. Hellberg, J. Plasma Phys. 44, 1 (1990).

    Article  ADS  Google Scholar 

  32. C. A. Mendoza-Briceño, S. M. Russell, and A. A. Mamun, Planet. Space Sci. 48, 599 (2000).

    Article  ADS  Google Scholar 

  33. F. Verheest, M. A. Hellberg, N. S. Saini, and I. Kourakis, Phys. Plasmas 18, 042309 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W.-S. Duan.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, DN., Zhang, J., Yang, Y. et al. Ion-acoustic supersolitons and double layers in plasmas with nonthermal electrons. Plasma Phys. Rep. 43, 833–837 (2017). https://doi.org/10.1134/S1063780X17080062

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X17080062

Navigation