Skip to main content
Log in

Effects of Electron Temperature on Ion-Acoustic Solitons and Double Layers in Nonextensive Plasmas

  • WAVES IN PLASMA
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

Using the Sagdeev potential technique and fluid plasma equations, nonlinear ion-acoustic solitary waves in the presence of thermal fluid ions and two-temperature nonextensive electrons are studied. The existence domain of solitons with respect to electron concentrations and electron temperatures are determined, and it is found that opposite polarity solitons are exist in the given plasma system. Using these results, the effect of cold-to-hot electron temperatures on the characteristics of the large amplitude ion-acoustic solitary waves as well as ion-acoustic double-layers is investigated. Further, it is shown that both compressive and rarefactive solitons coexist in such a plasma system. Finally, the results are compared with the results of similar Maxwellian plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. R. Z. Sagdeev, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1966), Vol. 4, p. 23.

    Google Scholar 

  2. H. Ikezi, “Experiments on ion-acoustic solitary waves,” Phys. Fluids 16, 1668–1675 (1973). https://doi.org/10.1063/1.1694194

    Article  ADS  Google Scholar 

  3. M. Q. Tran, “Ion acoustic solitons in a plasma: A review of their experimental properties and related theories,” Phys. Scr. 20 (3–4), 317–327 (1979). https://doi.org/10.1088/0031-8949/20/3-4/004

  4. H. Washimi and T. Taniuti, “Propagation of ion-acoustic solitary waves of small amplitude,” Phys. Rev. Lett. 17 (19), 996–997 (1966). https://doi.org/10.1103/PhysRevLett.17.996

    Article  ADS  Google Scholar 

  5. C. H. Su and C. S. Gardner, “Korteweg-de Vries equation and generalizations. III. Derivation of the Korteweg-de Vries equation and Burgers equation,” J. Math. Phys. 10, 536–539 (1969). https://doi.org/10.1063/1.1664873

    Article  ADS  MathSciNet  Google Scholar 

  6. R. Roychoudhury and S. Bhattacharyya, “Effect of ion temperature on ion-acoustic solitary waves: A pseudopotential approach,” Can. J. Phys. 65 (7), 699–702 (1987). https://doi.org/10.1139/p87-101

    Article  ADS  Google Scholar 

  7. G. P. Zank and J. F. McKenzie, “Solitons in an ion-beam plasma,” J. Plasma Phys. 39 (2), 183–191 (1988). https://doi.org/10.1017/S0022377800012976

    Article  ADS  Google Scholar 

  8. J. Binney and S. Tremaine, Galactic Dynamics (Princeton Univ. Press, Princeton, 1987).

    Google Scholar 

  9. H. E. Kandrup, “Mixing and “violent relaxation” for the one-dimensional gravitational Coulomb gas,” Phys. Rev. A 40 (12), 7265–7274 (1989). https://doi.org/10.1103/PhysRevA.40.7265

    Article  ADS  Google Scholar 

  10. C. Tsallis, “Some comments on Boltzmann–Gibbs statistical mechanics,” Chaos, Solitons Fractals 6, 539–559 (1995). https://doi.org/10.1016/0960-0779(95)80062-L

    Article  ADS  MathSciNet  Google Scholar 

  11. C. Tsallis, “Possible generalization of Boltzmann–Gibbs statistics,” J. Stat. Phys. 52, 479–487 (1988). https://doi.org/10.1007/BF01016429

    Article  ADS  MathSciNet  Google Scholar 

  12. B. N. Goswami and B. Buti, “Ion acoustic solitary waves in a two-electron-temperature plasma,” Phys. Lett. A 57 (2), 149–150 (1976). https://doi.org/10.1016/0375-9601(76)90195-X

    Article  ADS  Google Scholar 

  13. B. Buti, “Ion-acoustic holes in a two-electron-temperature plasma,” Phys. Lett. A 76 (3–4), 251–254 (1980). https://doi.org/10.1016/0375-9601(80)90483-1

  14. N. S. Saini and Shalini, “Ion acoustic solitons in a nonextensive plasma with multi-temperature electrons,” Astrophys. Space Sci. 346, 155–163 (2013). https://doi.org/10.1007/s10509-013-1431-4

    Article  ADS  Google Scholar 

  15. Shalini and N. S. Saini, “Ion acoustic solitary waves and double layers in a plasma with two temperature electrons featuring Tsallis distribution,” Phys. Plasmas 21, 102901 (2014). https://doi.org/10.1063/1.4897177

    Article  ADS  Google Scholar 

  16. M. M. Hatami and M. Tribeche, “Arbitrary amplitude ion-acoustic solitary waves in a two-temperature nonextensive electron plasma,” Phys. A 491, 55–63 (2018). https://doi.org/10.1016/j.physa.2017.09.004

    Article  MathSciNet  Google Scholar 

  17. G. S. Lakhina, A. P. Kakad, S. V. Singh, and F. Verheest, “Ion- and electron-acoustic solitons in two-electron temperature space plasmas,” Phys. Plasmas 15, 062903 (2008). https://doi.org/10.1063/1.2930469

    Article  ADS  Google Scholar 

  18. K. Nishihara and M. Tajiri, “Rarefaction ion acoustic solitons in two-electron-temperature plasma,” J. Phys. Soc. Jpn. 50 (12), 4047–4053 (1981). https://doi.org/10.1143/JPSJ.50.4047

    Article  ADS  Google Scholar 

  19. T. K. Baluku, M. A. Hellberg, and F. Verheest, “New light on ion acoustic solitary waves in a plasma with two-temperature electrons,” Europhys. Lett. 91 (1), 15001 (2010). https://doi.org/10.1209/0295-5075/91/15001

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct thisparticular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Hatami.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hatami, M.M. Effects of Electron Temperature on Ion-Acoustic Solitons and Double Layers in Nonextensive Plasmas. Phys. Wave Phen. 31, 427–433 (2023). https://doi.org/10.3103/S1541308X23060043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X23060043

Keywords:

Navigation