Skip to main content
Log in

Imaging of spatial distributions of the millimeter wave intensity by using visible continuum radiation from a discharge in a Cs–Xe mixture. Part I: Review of the method and its fundamentals

  • Applied Physics
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The first part of the review is presented which is dedicated to the time-resolved method of imaging and measuring the spatial distribution of the intensity of millimeter waves by using visible continuum (VC) emitted by the positive column (PC) of a dc discharge in a mixture of cesium vapor with xenon. The review focuses on the operating principles, fundamentals, and applications of this new technique. The design of the discharge tube and experimental setup used to create a wide homogeneous plasma slab with the help of the Cs–Xe discharge at a gas pressure of 45 Torr are described. The millimeter-wave effects on the plasma slab are studied experimentally. The mechanism of microwave-induced variations in the VC brightness and the causes of violation of the local relation between the VC brightness and the intensity of millimeter waves are discussed. Experiments on the imaging of the field patterns of horn antennas and quasi-optical beams demonstrate that this technique can be used for good-quality imaging of millimeter-wave beams in the entire millimeter-wavelength band. The method has a microsecond temporal resolution and a spatial resolution of about 2 mm. Energy sensitivities of about 10 μJ/cm2 in the Ka-band and about 200 μJ/cm2 in the D-band have been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. K. Thumm and W. Kasparek, IEEE Trans. Plasma Sci. 30, 755 (2002).

    Article  ADS  Google Scholar 

  2. N. L. Aleksandrov, A. V. Chirkov, G. G. Denisov, and S. V. Kuzikov, Int. J. Infrared Millim. Waves 18, 1505 (1997).

    Article  ADS  Google Scholar 

  3. S. Jawla, J-P. Hogge, S. Alberti, T. Goodman, B. Piosczyk, and T. Rzesnicki, IEEE Trans. Plasma Sci. 37, 414 (2009).

    Article  ADS  Google Scholar 

  4. S. L. Smith, J. W. Archer, G. P. Timms, K. W. Smart, S. J. Barker, S. G. Hay, and C. Granet, IEEE Trans. Antennas Propag. 60, 1744 (2012).

    Article  ADS  Google Scholar 

  5. V. I. Matveev, Testing. Diagn., No. 2, 71 (2005).

    Google Scholar 

  6. P. A. Fedyunin and A. I. Kazmin, Methods of Radiowave Monitoring of the Protective Coating Parameters of Aviation Equipment (Fizmatlit, Moscow, 2012) [in Russian].

    Google Scholar 

  7. S. Kharkovsky and R. Zoughi, IEEE Instrum. Meas. Mag. 10 (2), 26 (2007).

    Article  Google Scholar 

  8. J.-C. Bolomey, IEEE Trans. Microwave Theory Tech. 37, 2109 (1989).

    Article  ADS  Google Scholar 

  9. N. S. Greeney and J. A. Scales, Appl. Phys. Lett. 91, 222909 (2007).

    Article  ADS  Google Scholar 

  10. D. M. Sheen, D. L. McMakin, and T. E. Hall, IEEE Trans. Microwave Theory Tech. 49, 1581 (2001).

    Article  ADS  Google Scholar 

  11. A. Tang, Q. J. Gu, and M.-C. F. Chang, IEEE Commun. Mag. 49 (10), 190 (2011).

    Article  Google Scholar 

  12. S. S. Ahmed, A. Schiessl, F. F. Gumbmann, M. Tiebout, S. Methfessel, and L.-P. Schmidt, IEEE Microwave Mag. 13 (6), 26 (2012).

    Article  Google Scholar 

  13. K. Watabe, K. Shimizu, M. Yoneyama, and K. Mizuno, IEEE Trans. Microwave Theory Tech. 51, 1512 (2003).

    Article  ADS  Google Scholar 

  14. L. V. Volkov, A. I. Voronko, A. R. Karapetyan, and S. A. Tikhomirov, Quant. Electron. 32, 835 (2002).

    Article  ADS  Google Scholar 

  15. V. I. Shashkin, Yu. I. Belov, P.V. Volkov, et al., Tech. Phys. Lett. 39, 560 (2013).

    Article  ADS  Google Scholar 

  16. A. Tessmann, S. Kudszus, T. Feltgen, M. Riessle, C. Sklarczyk, and W. H. Haydl, IEEE Trans. Microwave Theory Tech. 50, 2995 (2002).

    Article  ADS  Google Scholar 

  17. R. Ozhegov, K. Gorshkov, Y. Vachtomin, K. Smirnov, M. Finkel, G. Goltsman, O. Kiselev, N. Kinev, L. Filippenko, and V. Koshelets, in THz and Security Applications, Detectors, Sources and Associated Electronics for THz Applications, Ed. by C. Corsi and F. Sizov (Springer, Dordrecht, 2014), p. 113.

  18. N. C. Luhmann, H. Bindslev, H. Park, J. Sánchez, G. Taylor, and C. X. Yu, Fusion Sci. Technol. 53, 335 (2008).

    Google Scholar 

  19. N. S. Kopeika and N. H. Farhat, IEEE Trans. Electron Dev. 22, 534 (1975).

    Article  ADS  Google Scholar 

  20. J. Felsteiner, A. Rosenberg, J. Politch, and Y. Ben-Aryeh, Appl. Opt. 24, 800 (1985).

    Article  ADS  Google Scholar 

  21. A. Abramovich, N. S. Kopeika, and D. Rozban, J. Appl. Phys. 104, 033302 (2008).

    Article  ADS  Google Scholar 

  22. G. Brooker and D. G. Johnson, IEEE Sensors J. 15, 3557 (2015).

    Article  Google Scholar 

  23. M. Tsuchiya, A. Kanno, K. Sasagawa, and T. Shiozawa, IEEE Trans. Microwave Theory Tech. 57, 3373 (2009).

    Article  ADS  Google Scholar 

  24. A. P. Bazhulin, I. A. Irisova, V. S. Sosorev, Yu. P. Timofeev, and S. A. Fridman, Vest. Akad. Nauk SSSR, No. 12, 15 (1973).

    Google Scholar 

  25. V. S. Cherkassky, V. V. Gerasimov, G. M. Ivanov, B. A. Knyazev, G. N. Kulipanov, L. A. Lukyanchikov, L. A. Merzhievsky, and N. A. Vinokurov, Nucl. Instrum. Meth. Phys. Res. A 575, 63 (2007).

    Article  ADS  Google Scholar 

  26. T. H. Chang, C. F. Yu, and C. T. Fan, Rev. Sci. Insrum. 76, 074703 (2005).

    Article  ADS  Google Scholar 

  27. L. Junchang and W. Yanmei, Opt. Commun. 282, 455 (2009).

    Article  ADS  Google Scholar 

  28. T. Idehara, T. Kosuga, L. Agusu, I. Ogawa, H. Takahashi, M. E. Smith, and R. Dupree, J. Infrared Millim. Terahertz Waves 31, 763 (2010).

    Article  Google Scholar 

  29. S. H. Gold, A. W. Fliflet, W. M. Manheimer, R. B. McCowan, R. C. Lee, V. L. Granatstein, D. L. Hardesty, A. K. Kinkead, and M. Sucy, IEEE Trans. Plasma Sci. 16, 142 (1988).

    Article  ADS  Google Scholar 

  30. V. L. Bratman, G. G. Denisov, M. M. Ofitserov, S. D. Korovin, S. D. Polevin, and V. V. Rostov, IEEE Trans. Plasma Sci. 15, 2 (1987).

    Article  ADS  Google Scholar 

  31. S. P. Bugaev, V. I. Kanavets, A. I. Klimov, and V. I. Koshelev, Sov. Phys. Dokl. 33, 78 (1988).

    ADS  Google Scholar 

  32. A. L. Vikharev, V. B. Gil’denburg, S. V. Golubev, B. G. Eremin, O. A. Ivanov, A. G. Litvak, A. N. Stepanov, and A. D. Yunakovskii, Sov. Phys. JETP 67, 724 (1988).

    Google Scholar 

  33. A. Cook, M. Shapiro, and R. Temkin, Appl. Phys. Lett. 97, 11504 (2010).

    Article  ADS  Google Scholar 

  34. V. N. Ochkin, Spectroscopy of Low-Temperature Plasma (Wiley, Weinheim, 2009).

    Book  Google Scholar 

  35. M. S. Gitlin, V. V. Golovanov, A. G. Spivakov, A. I. Tsvetkov, and V. V. Zelenogorskiy, J. Appl. Phys. 107, 063301 (2010).

    Article  ADS  Google Scholar 

  36. M. S. Gitlin and A. G. Spivakov, Tech. Phys. Lett. 33, 205 (2007).

    Article  ADS  Google Scholar 

  37. M. S. Gitlin, A. E. Fedotov, S. E. Stukachev, and A. I. Tsvetkov, Phys. Plasmas 19, 033508 (2012).

    Article  ADS  Google Scholar 

  38. A. E. Fedotov, M. S. Gitlin, V. V. Golovanov, A. O. Perminov, and S. E. Stukachev, in Proceedings of the 6th International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter, and Submillimeter Waves and Workshop on Terahertz Technologies, Kharkov, 2007, Vol. 1, p. 263.

    Google Scholar 

  39. M. S. Gitlin, V. V. Golovanov, and A. I. Tsvetkov, IEEE Trans. Plasma Sci. 36, 1398 (2008).

    Article  ADS  Google Scholar 

  40. M. S. Gitlin and A. I. Tsvetkov, Appl. Phys. Lett. 94, 234102 (2009).

    Article  ADS  Google Scholar 

  41. M. S. Gitlin, I. L. Epstein, and Yu. A. Lebedev, J. Phys. D 46, 415208 (2013).

    Article  Google Scholar 

  42. N. A. Bogatov, M. S. Gitlin, D. A. Dikan, G. A. Luchinin, Phys. Rev. Lett. 79, 2819 (1997).

    Article  ADS  Google Scholar 

  43. J. H. Wazink and J. Polman, J. Appl. Phys. 40, 2403 (1969).

    Article  ADS  Google Scholar 

  44. H. van Tongeren, J. Appl. Phys. 45, 89 (1974).

    Article  ADS  Google Scholar 

  45. L. M. Biberman, V. S. Vorob’ev, and I. T. Yakubov, Kinetics of Nonequilibrium Low-Temperature Plasmas (Nauka, Moscow, 1982; Consultants Bureau, New York, 1987).

    Book  Google Scholar 

  46. V. M. Batenin and V. F. Chinnov, Sov. Phys. JETP 34, 30 (1972).

    ADS  Google Scholar 

  47. Yu. B. Golubovskii, Yu. M. Kagan, and L. L. Komarova, Opt. Spectrosc. 33, 646 (1972).

    Google Scholar 

  48. J. Park, I. Henins, H. W. Herrmann, and G. S. Selwyn, Phys. Plasmas 7, 3141 (2000).

    Article  ADS  Google Scholar 

  49. S. Park, W. Choe, S. Y. Moon, and J. Park, Appl. Phys. Lett. 104, 084103 (2014).

    Article  ADS  Google Scholar 

  50. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987; Springer-Verlag, Berlin, 1991).

    Book  Google Scholar 

  51. I. V. Lebedev, Microwave Technique and Devises (Vysshaya Shkola, Moscow, 1970.) [in Russian].

  52. N. Marcuvitz, Waveguide Handbook. (Peregrinus, London, 1986).

    Book  Google Scholar 

  53. J. Camparo and G. Fathi, J. Appl. Phys. 105, 103302 (2009).

    Article  ADS  Google Scholar 

  54. V. L. Bratman, B. S. Dumesh, A. E. Fedotov, P. B. Makhalov, B. Z. Movshevich, and F. S. Rusin, IEEE Trans. Plasma Sci. 38, 1466 (2010).

    Article  ADS  Google Scholar 

  55. P. J. B. Clarricoats and A. D. Olver, Corrugated Horns for Microwave Antennas (Peregrinus, London, 1984).

    Book  Google Scholar 

  56. A. Rutscher and S. Pfau, Physica B+C 81, 395 (1976).

    Article  ADS  Google Scholar 

  57. J. M. de Regt, J. van Dijk, J. A. M. van der Mullen, and D. C. Schram, J. Phys. D 28, 40 (1995).

    Article  ADS  Google Scholar 

  58. K. T. A. L. Burm, Plasma Sources Sci. Technol. 13, 387 (2004).

  59. L. Agnew and W. H. Reichelt, J. Appl. Phys. 39, 3149 (1968).

    Article  ADS  Google Scholar 

  60. Thermionic Converters and Low-Temperature Plasma, Ed. by B. Y. Moyzhes and G. E. Pikus (Nauka, Moscow, 1973; Nat. Tech. Inform. Service, Springfield, 1978).

  61. G. A. Dyuzhev, V. B. Kaplan, and B. Y. Moyzhes, Sov. Phys. Tech. Phys. 13, 726 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Gitlin.

Additional information

Original Russian Text © M.S. Gitlin, 2017, published in Uspekhi Prikladnoi Fiziki, 2015, Vol. 3, No. 6, pp. 515–536.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gitlin, M.S. Imaging of spatial distributions of the millimeter wave intensity by using visible continuum radiation from a discharge in a Cs–Xe mixture. Part I: Review of the method and its fundamentals. Plasma Phys. Rep. 43, 253–270 (2017). https://doi.org/10.1134/S1063780X17020040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X17020040

Navigation