Skip to main content
Log in

Imaging of spatial distributions of the millimeter wave intensity by using the Visible Continuum Radiation from a discharge in a Cs–Xe mixture. Part II: Demonstration of application capabilities of the technique

  • Applied Physics
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The paper presents the second part of the review on a high-sensitive technique for time-resolved imaging and measurements of the 2D intensity profiles of millimeter-wave radiation by means of Visible Continuum Radiation emitted by the positive column of a medium-pressure Cs-Xe DC Discharge (VCRD method). The first part of the review was focused on the operating principles and fundamentals of this new technique [Plasma Phys. Rep. 43, 253 (2017)]. The second part of the review focuses on experiments demonstrating application of this imaging technique to measure the parameters of radiation at the output of moderate-power millimeter-wave sources. In particular, the output waveguide mode of a moderate-power W-band gyrotron with a pulsed magnetic field was identified and the relative powers of some spurious modes at the outputs of this gyrotron and a pulsed D-band orotron were evaluated. The paper also reviews applications of the VCRD technique for real-time imaging and nondestructive testing with a frame rate of higher than 10 fps by using millimeter waves. Shadow projection images of objects opaque and transparent for millimeter waves have been obtained using pulsed watt-scale millimeter waves for object illumination. Near video frame rate millimeter-wave shadowgraphy has been demonstrated. It is shown that this technique can be used for single-shot screening (including detection of concealed objects) and time-resolved imaging of time-dependent processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. K. Thumm and W. Kasparek, IEEE Trans. Plasma Sci. 30, 755 (2002).

    Article  ADS  Google Scholar 

  2. N. L. Aleksandrov, A. V. Chirkov, G. G. Denisov, and S. V. Kuzikov, Int. J. Infrared Millim. Waves 18, 1505 (1997).

    Article  ADS  Google Scholar 

  3. S. Jawla, J.-P. Hogge, S. Alberti, T. Goodman, B. Piosczyk, and T. Rzesnicki, IEEE Trans. Plasma Sci. 37, 414 (2009).

    Article  ADS  Google Scholar 

  4. B. Kebapci, F. Tankut, H. Altan, and T. Akin, Proc. SPIE 9651, 96510L-1 (2015).

    Google Scholar 

  5. V. I. Matveev. Kontrol’ Diagnostika, No. 2, 71 (2005).

    Google Scholar 

  6. P. A. Fedyunin and A. I. Kazmin, Methods of Radiowave Monitoring of the Protective Coating Parameters of Aviation Equipment (Fizmatlit, Moscow, 2012) [in Russian].

    Google Scholar 

  7. S. Kharkovsky and R. Zoughi, IEEE Instrum. Meas. Mag. 10 (2), 26 (2007).

    Article  Google Scholar 

  8. J.-C. Bolomey, IEEE Trans. Microwave Theory Tech. 37, 2109 (1989).

    Article  ADS  Google Scholar 

  9. D. M. Sheen, D. L. McMakin, and T. E. Hall, IEEE Trans. Microwave Theory Tech. 49, 1581 (2001).

    Article  ADS  Google Scholar 

  10. A. Tang, Q. J. Gu, and M.-C. F. Chang, IEEE Commun. Mag. 49, 190 (2011).

    Article  Google Scholar 

  11. S. S. Ahmed, A. Schiessl, F. F. Gumbmann, M. Tiebout, S. Methfessel, and L.-P. Schmidt, IEEE Microwave Mag. 13 (6), 26 (2012).

    Article  Google Scholar 

  12. K. Watabe, K. Shimizu, M. Yoneyama, and K. Mizuno, IEEE Trans. Microwave Theory Tech. 51, 1512 (2003).

    Article  ADS  Google Scholar 

  13. L. V. Volkov, A. I. Voronko, A. R. Karapetyan, and S. A. Tikhomirov, Quant. Electron. 32, 835 (2002).

    Article  ADS  Google Scholar 

  14. R. Ozhegov, K. Gorshkov, Y. Vachtomin, K. Smirnov, M. Finkel, G. Goltsman, O. Kiselev, N. Kinev, L. Filippenko, and V. Koshelets, in THz and Security Applications: Detectors, Sources and Associated Electronics for THz Applications, Ed. by C. Corsi and F. Sizov (Springer, Dordrecht, 2014), p. 113.

    Book  Google Scholar 

  15. M. S. Gitlin, Plasma Physics Rep. 43, 253 (2017).

    Article  ADS  Google Scholar 

  16. M. S. Gitlin, V. V. Golovanov, A. G. Spivakov, A. I. Tsvetkov, and V. V. Zelenogorskiy, J. Appl. Phys. 107, 063301 (2010).

    Article  ADS  Google Scholar 

  17. M. S. Gitlin and A. G. Spivakov, Tech. Phys. Lett. 33, 205 (2007).

    Article  ADS  Google Scholar 

  18. M. S. Gitlin, A. E. Fedotov, S. E. Stukachev, and A. I. Tsvetkov, Phys. Plasmas 19, 033508 (2012).

    Article  ADS  Google Scholar 

  19. A. E. Fedotov, M. S. Gitlin, V. V. Golovanov, A. O. Perminov, and S. E. Stukachev, in Proceedings of the Sixth International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves and Workshop on Terahertz Technologies, Kharkov, 2007, Vol. 1, p. 263.

    Google Scholar 

  20. M. S. Gitlin, I. L. Epstein, and Yu. A. Lebedev, J. Phys. D 46, 415208 (2013).

    Article  Google Scholar 

  21. M. S. Gitlin, V. V. Golovanov, and A. I. Tsvetkov, IEEE Trans. Plasma Sci. 36, 1398 (2008).

    Article  ADS  Google Scholar 

  22. M. S. Gitlin and A. I. Tsvetkov, Appl. Phys. Lett. 94, 234102 (2009).

    Article  ADS  Google Scholar 

  23. V. L. Bratman, V. A. Gintsburg, Yu. A. Grishin, B. S. Dumesh, F. S. Rusin, and A. E. Fedotov, Radiophys. Quant. Electron. 49, 866 (2006).

    Article  ADS  Google Scholar 

  24. I. V. Lebedev, Microwave Techniques and Devises (Vysshaya Shkola, Moscow, 1970), Vol. 1 [in Russian].

    Google Scholar 

  25. N. Marcuvitz, Waveguide Handbook (Peregrinus, London, 1986).

    Book  Google Scholar 

  26. M. S. Gitlin, M. Yu. Glyavin, A. G. Luchinin, and V. V. Zelenogorsky, IEEE Trans. Plasma Sci. 33, 380 (2005).

    Article  ADS  Google Scholar 

  27. V. A. Flyagin, A. G. Luchinin, and G. S. Nusinovich, Int. J. Infrared Millim. Waves 4, 629 (1983).

    Article  ADS  Google Scholar 

  28. M. Yu. Glyavin, A. G. Luchinin, A. A. Bogdashov, V. N. Manuilov, M. V. Morozkin, Yu. Rodin, G. G. Denisov, D. Kashin, G. Rogers, C. A. Romero-Talamas, R. Pu, A. G. Shkvarunetz, and G. S. Nusinovich, Radiophys. Quant. Electron. 56, 497 (2014).

    Article  ADS  Google Scholar 

  29. M. Yu. Glyavin, S. V. Golubev, V. G. Zorin, I. V. Izotov, A. G. Litvak, A. G. Luchinin, M. V. Morozkin, S. V. Razin, A. V. Sidorov, and V. A. Skalyga, Radiophys. Quant. Electron. 56, 561 (2014).

    Article  ADS  Google Scholar 

  30. N. A. Zavol’skiy, V. E. Zapevalov, M. A. Moiseev, and A. S. Sedov, Radiophys. Quant. Electron. 54, 402 (2011).

    Article  ADS  Google Scholar 

  31. J. E. Bjarnason, T. L. J. Chan, A. W. M. Lee, M. A. Celis, and E. R. Brown, Appl. Phys. Lett. 85, 519 (2004).

    Article  ADS  Google Scholar 

  32. R. Appleby and H. B. Wallace, IEEE Trans. Antennas Propag. 55, 2944 (2007).

    Article  ADS  Google Scholar 

  33. S. Laybros, P. F. Combes, and H. J. Mametsa, IEEE Antennas Propag. Mag. 37 (4), 50 (2005).

    Article  ADS  Google Scholar 

  34. B. Saleh and M. Teich, Fundamentals of Photonics (Wiley, New-York, 2007).

    Google Scholar 

  35. S. P. Anokhov, J. Opt. Soc. Am. A 24, 2493 (2007).

    Article  ADS  Google Scholar 

  36. M. Amiri and M. T. Tavassoly, Opt. Commun. 272, 349 (2007).

    Article  ADS  Google Scholar 

  37. H. Luo and C. Zhou, Appl. Opt. 43, 6242 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Gitlin.

Additional information

Original Russian Text © M.S. Gitlin, M.Yu. Glyavin, A.E. Fedotov, A.I. Tsvetkov, 2016, published in Uspekhi Prikladnoi Fiziki, 2016, Vol. 4, No. 2, pp. 111–126.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gitlin, M.S., Glyavin, M.Y., Fedotov, A.E. et al. Imaging of spatial distributions of the millimeter wave intensity by using the Visible Continuum Radiation from a discharge in a Cs–Xe mixture. Part II: Demonstration of application capabilities of the technique. Plasma Phys. Rep. 43, 778–791 (2017). https://doi.org/10.1134/S1063780X17070066

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X17070066

Navigation