Skip to main content
Log in

Effect of dust size distribution on ion-acoustic solitons in dusty plasmas with different dust grains

  • Dusty Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Theoretical studies are carried out for ion acoustic solitons in multicomponent nonuniform plasma considering the dust size distribution. The Korteweg−de Vries equation for ion acoustic solitons is given by using the reductive perturbation technique. Two special dust size distributions are considered. The dependences of the width and amplitude of solitons on dust size parameters are shown. It is found that the properties of a solitary wave depend on the shape of the size distribution function of dust grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Praburam and J. Goree, Phys. Plasmas 3, 1212 (1996).

    Article  ADS  Google Scholar 

  2. R. L. Merlino, A. Barkan, C. Thompson, and N. D’Angelo, Phys. Plasmas 5, 1607 (1998).

    Article  ADS  Google Scholar 

  3. V. E. Fortov, A. P. Nefedov, V. M. Torchinsky, V. I. Molotkov, O. F. Petrov, A. A. Samtian, A. M. Lipaev, and A. G. Khrapak, Phys. Lett. A 229, 317 (1997).

    Article  ADS  Google Scholar 

  4. Y. Y. Wang and J. F. Zhang, Phys. Lett. A 372, 3707 (2008).

    Article  ADS  Google Scholar 

  5. V. E. Fortov, A. V. Ivlev, S. A. Khrapak, A. G. Khrapak, and G. E. Morfill, Phys. Rep. 421, 1 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  6. C. K. Goertz, Rev. Geophys. 27, 271 (1989).

    Article  ADS  Google Scholar 

  7. D. A. Mendis, Astrophys. Space Sci. 176, 163 (1991).

    Article  ADS  Google Scholar 

  8. E. Zweibel, Phys. Plasmas 6, 1725 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  9. T. Nakano, Astrophys. J. 494, 587 (1998).

    Article  ADS  Google Scholar 

  10. Y. Nakamura, Phys. Plasmas 9, 440 (2002).

    Article  ADS  Google Scholar 

  11. M. Ferdousi, M. R. Miah, S. Sultana, and A. A. Mamun, Braz. J. Phys. 45, 244 (2015).

    Article  ADS  Google Scholar 

  12. A. Shah, Q. Haque, and S. Mahmood, Phys. Plasmas 16, 123704 (2009).

    Article  ADS  Google Scholar 

  13. A. Barkan, N. D’Angelo, and R. L. Merlino, Planet. Space Sci. 44, 239 (1996).

    Article  ADS  Google Scholar 

  14. R. Bharuthram and P.K. Shukla, Planet. Space Sci. 40, 973 (1992).

    Article  ADS  Google Scholar 

  15. R. S. Tiwari, S. L. Jain, and M. K. Mishra, Phys. Plasmas 18, 083702 (2011).

    Article  ADS  Google Scholar 

  16. V. V. Prudskikh, Plasma Phys. Rep. 34, 955 (2008).

    Article  ADS  Google Scholar 

  17. F. Verheest, T. Cattaert, and M. A. Hellberg, Phys. Plasmas 12, 082308 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  18. S. I. Popel and M. Y. Yu, Contrib. Plasma Phys. 35, 103 (1995).

    Article  ADS  Google Scholar 

  19. S. Ghosh and R. Bharuthram, Astrophys. Space Sci. 314, 121 (2008).

    Article  ADS  Google Scholar 

  20. R. S. Tiwari and M. K. Mishra, Phys. Plasmas 13, 062112 (2006).

    Article  ADS  Google Scholar 

  21. S. K. El-Labany, E. F. El-Shamy, and S. A. El-Warraki, Phys. Plasmas 16, 013703 (2009).

    Article  ADS  Google Scholar 

  22. T. E. Sheridan1, S. Yi, and K. E. Lonngren, Phys. Plasmas 5, 3165 (1998).

    Article  ADS  Google Scholar 

  23. T. V. Losseva, S. I. Popel, and A. P. Golub’, Plasma Phys. Rep. 38, 729 (2012).

    Article  ADS  Google Scholar 

  24. A. Saha and P. Chatterjee, Braz. J. Phys. 45, 419 (2015).

    Article  ADS  Google Scholar 

  25. M. I. Boushaki, D. Djellout, and R. Annou, Phys. Plasmas 19, 073707 (2012).

    Article  ADS  Google Scholar 

  26. S. I. Popel, A. P. Golub’, and T. V. Losseva, Phys. Rev. E 67, 056402 (2003).

    Article  ADS  Google Scholar 

  27. T. V. Losseva, S. I. Popel, A. P. Golub’, and P. K. Shukla, Phys. Plasmas 16, 093704 (2009).

    Article  ADS  Google Scholar 

  28. T. V. Losseva, S. I. Popel, A. P. Golub’, Yu. N. Izvekova, and P. K. Shukla, Phys. Plasmas 19, 013703 (2012).

    Article  ADS  Google Scholar 

  29. G. C. Das and B. Karmakar, Aust. J. Phys. 43, 65 (1990).

    Article  ADS  Google Scholar 

  30. F. Aziz and U. Stroth, Phys. Plasmas 16, 032108 (2009).

    Article  ADS  Google Scholar 

  31. D. K. Singh and H. K. Malik, IEEE Trans. Plasma Sci. 36, 462 (2008).

    Article  ADS  Google Scholar 

  32. H. K. Malik, Phys. Lett. A 365, 224 (2007).

    Article  ADS  Google Scholar 

  33. S. G. Tagare and R. V. Reddy, Plasma Phys. Control. Fusion 29, 671 (1987).

    Article  ADS  Google Scholar 

  34. H. Alinejad, S. Sobhanian, and J. Mahmoodi, Phys. Plasmas 13, 012304 (2006).

    Article  ADS  Google Scholar 

  35. H. K. Malik and U. Stroth, Phys. Plasmas 17, 035005 (2008).

    Google Scholar 

  36. C. Yan, Phys. Lett. A 224, 77 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  37. M. M. Lin and W. S. Duan, Phys. Plasmas 16, 073701 (2009).

    Article  ADS  Google Scholar 

  38. G. J. He and W. S. Duan, Phys. Plasmas 15, 043702 (2008).

    Article  ADS  Google Scholar 

  39. M. A. Raadu, IEEE Trans. Plasma Sci. 29 182 (2001).

    Article  ADS  Google Scholar 

  40. V. E. Fortov, A. P. Nefedov, V. I. Molotkov, M. Y. Poustylnik, and V. M. Torchinsky, Phys. Rev. Lett. 87, 205002 (2001).

    Article  ADS  Google Scholar 

  41. A. A. Samarian and S. V. Vladimirov, Phys. Rev. Lett. 89, 229501 (2002).

    Article  ADS  Google Scholar 

  42. P. Meuris, Planet. Space Sci. 45, 1171 (1997).

    Article  ADS  Google Scholar 

  43. P. Meuris, F. Verheest, and G. S. Lakhina, Planet. Space Sci. 45, 449 (1997).

    Article  ADS  Google Scholar 

  44. J. A. M. McDonnell, Astron. Astrophys. 187, 719 (1987).

    ADS  Google Scholar 

  45. D. A. Gurnett, Icarus 53, 236 (1983).

    Article  ADS  Google Scholar 

  46. M. R. Showalter and J. N. Cuzzi, Icarus 103, 124 (1993).

    Article  ADS  Google Scholar 

  47. M. R. Showalter, Icarus 100, 394 (1992).

    Article  ADS  Google Scholar 

  48. W. S. Duan, H. J. Yang, and Y. R. Shi, Phys. Lett. A 361, 368 (2007).

    Article  ADS  Google Scholar 

  49. J. H. Chen and W. S. Duan, Phys. Plasmas 14, 083702 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Shan Duan.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, DN., Yang, Y., Yan, Q. et al. Effect of dust size distribution on ion-acoustic solitons in dusty plasmas with different dust grains. Plasma Phys. Rep. 43, 212–217 (2017). https://doi.org/10.1134/S1063780X17020039

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X17020039

Navigation