Skip to main content
Log in

Solitary waves in dusty plasmas with weak relativistic effects in electrons and ions

  • Dusty Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Two distinct classes of dust ion acoustic (DIA) solitary waves based on relativistic ions and electrons, dust charge Z d and ion-to-dust mass ratio Q’ = m i /m d are established in this model of multicomponent plasmas. At the increase of mass ratio Q’ due to increase of relativistic ion mass and accumulation of more negative dust charges into the plasma causing decrease of dust mass, relativistic DIA solitons of negative potentials are abundantly observed. Of course, relativistic compressive DIA solitons are also found to exist simultaneously. Further, the decrease of temperature inherent in the speed of light c causes the nonlinear term to be more active that increases the amplitude of the rarefactive solitons and dampens the growth of compressive solitons for relatively low and high mass ratio Q’, respectively. The impact of higher initial streaming of the massive ions is observed to identify the point of maximum dust density N d to yield rarefactive relativistic solitons of maximum amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. C. Whipple, T. G. Northrop, and D. A. Mendis, J. Geophys. Res. 90, 7405 (1985).

    Article  ADS  Google Scholar 

  2. P. V. Bliokh and V. V. Yaroshenko, Sov. Astron. 29, 330 (1985).

    ADS  Google Scholar 

  3. U. de Angelis, V. Formisano, and M. Giordano, J. Plasma Phys. 40, 399 (1998).

    Article  ADS  Google Scholar 

  4. N. N. Rao, P. K. Shukla, and M. Y. Yu, Planet. Space Sci. 38, 543 (1990).

    Article  ADS  Google Scholar 

  5. F. Verheest, Planet. Space Sci. 40, 1 (1992).

    Article  ADS  Google Scholar 

  6. A. Barkain, R. L. Merlino, and N. D’Angelo, Phys. Plasmas 2, 3563 (1995).

    Article  ADS  Google Scholar 

  7. A. A. Mamun, R. A. Cairns, and P. K. Shukla, Phys. Plasmas 3, 702 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  8. P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics (IOP, London, 2002).

    Book  Google Scholar 

  9. W. S. Duan, X. R. Hong, Y. R. Shi, and J. A. Sun, Chaos Solitons Fractals 16, 767 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  10. Y. Y. Wang and J. F. Jhang, Phys. Lett. A 352, 155 (2006).

    Article  ADS  Google Scholar 

  11. A. A. Mamun, R. A. Cairns, and P. K. Shukla, Phys. Plasmas 3, 2610 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  12. F. Verheest and S. R. Pillay, Phys. Plasmas 15, 013703 (2008).

    Article  ADS  Google Scholar 

  13. H. R. Pakzad, Astrophys. Space Sci. 324, 41 (2009).

    Article  ADS  Google Scholar 

  14. M. M. Masud and A. A. Mamun, JETP Lett. 96, 765 (2013).

    Article  ADS  Google Scholar 

  15. N. R. Kundu, M. M. Masud, K. S. Ashraf, and A. A. Mamun, Astrophys. Space Sci. 343, 279 (2013).

    Article  ADS  Google Scholar 

  16. C.-R. Choi, D.-Y. Lee, Y.-H. Kim, and N. C. Lee, Phys. Plasmas 16, 043701 (2009).

    Article  ADS  Google Scholar 

  17. F. Verheest and A. M. Hellberg, Phys. Plasmas 16, 064701 (2009).

    Article  ADS  Google Scholar 

  18. M. Tribeche, S. Boukhalfa, and H. T. Zerguini, Phys. Plasmas 17, 064501 (2010).

    Article  ADS  Google Scholar 

  19. H.-F. Liu, S.-Q. Wang, Z.-L. Wang, F.-Z. Yang, Y. Liu, and S. Li, Adv. Space Res. 51, 2368 (2013).

    Article  ADS  Google Scholar 

  20. B. C. Kalita and S. Das, Astrophys. Space Sci. 352, 585 (2014).

    Article  ADS  Google Scholar 

  21. N. D. Angelo, Planet. Space Sci. 42, 507 (1994).

    Article  ADS  Google Scholar 

  22. Y. Nakamura, H. Bailung, and P. K. Shukla, Phys. Rev. Lett. 83, 1602 (1999).

    Article  ADS  Google Scholar 

  23. S. Ghosh, S. Sarkar, H. Khan, and M. R. Gupta, Phys. Lett. A 274, 162 (2000).

    Article  ADS  Google Scholar 

  24. Y. Nakamura and A. Sarma, Phys. Plasmas 8, 3623 (2001).

    Google Scholar 

  25. S. I. Popel, T. V. Losseva, A. P. Golub’, R. L. Merlino, and S. N. Andreev, Contrib. Plasma Phys. 45, 461 (2005).

    Article  ADS  Google Scholar 

  26. S. Gh. Dezfuly and D. Dorranian, Contrib. Plasma Phys. 53, 564 (2013).

    Article  ADS  Google Scholar 

  27. S. I. Popel, S. N. Andreev, A. A. Gisko, A. P. Golub’, and T. V. Losseva, Plasma Phys. Rep. 30, 284 (2004).

    Article  ADS  Google Scholar 

  28. W. Masood, A. Mushtaq, and R. Khan, Phys. Plasmas 14, 123702 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. C. Kalita.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalita, B.C., Choudhury, M. Solitary waves in dusty plasmas with weak relativistic effects in electrons and ions. Plasma Phys. Rep. 42, 996–1004 (2016). https://doi.org/10.1134/S1063780X16100093

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X16100093

Navigation