Skip to main content
Log in

Plasmachemical and heterogeneous processes in ozonizers with oxygen activation by a dielectric barrier discharge

  • Ion and Plasma Sources
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Plasmachemical and heterogeneous processes of generation and loss of ozone in the atmosphericpressure dielectric barrier discharge in oxygen are studied theoretically. Plasmachemical and electronic kinetics in the stage of development and decay of a single plasma filament (microdischarge) are calculated numerically with and without allowance for the effects of ozone vibrational excitation and high initial ozone concentration. The developed analytical approach is applied to determine the output ozone concentration taking into account ozone heterogeneous losses on the Al2O3 dielectric surface. Using the results of quantummechanical calculations by the method of density functional theory, a multistage catalytic mechanism of heterogeneous ozone loss based on the initial passivation of a pure Al2O3 surface by ozone and the subsequent interaction of O3 molecules with the passivated surface is proposed. It is shown that the conversion reaction 2O3 → 3O2 of a gas-phase ozone molecule with a physically adsorbed ozone molecule can result in the saturation of the maximum achievable ozone concentration at high specific energy depositions, the nonstationarity of the output ozone concentration, and its dependence on the prehistory of ozonizer operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Lunin, M. P. Popovich, and S. N. Tkachenko, Physical Chemistry of Ozone (Izd. Mosk. Gos. Univ., Moscow, 1998) [in Russian].

    Google Scholar 

  2. Yu. V. Filippov, V. A. Voblikova, and V. I. Panteleev, Electrosynthesis of Ozone (Izd. Mosk. Gos. Univ., Moscow, 1987) [in Russian].

    Google Scholar 

  3. V. T. Samoilovich, V. I. Gibalov, and K. V. Kozlov, Physical Chemistry of Barrier Discharge (Izd. Mosk. Gos. Univ., Moscow, 1989) [in Russian].

    Google Scholar 

  4. V. I. Gibalov and G. J. Pietsch, Plasma Sources Sci. Technol. 21, 024010 (2012).

    Article  ADS  Google Scholar 

  5. U. Kogelschatz, Plasma Chem. Plasma Process. 23, 1 (2003).

    Article  Google Scholar 

  6. T. Murata, Y. Okita, M. Noguchi, and I. Takase, Ozone: Sci. Eng. 26, 429 (2004).

    Article  Google Scholar 

  7. A. V. Zosimov, V. V. Lunin, V. G. Samoilovich, E. A. Abramovskaya, Yu. A. Mankelevich, A. Yu. Poroykov, T. V. Rakhimova, and D. G. Voloshin, Russ. J. Phys. Chem. A 90, 1687 (2016).

    Article  Google Scholar 

  8. Yu. A. Mankelevich, A. Yu. Poroykov, T. V. Rakhimova, D. G. Voloshin, A. A. Chukalovsky, A. V. Zosimov, V. V. Lunin, and V. G. Samoilovich, Russ. J. Phys. Chem. A 90, 1894 (2016).

    Article  Google Scholar 

  9. F. Hanisch and J. N. Crowley, Atmos. Chem. Phys. 3, 119 (2003).

    Article  ADS  Google Scholar 

  10. M. A. Hanning-Lee, B. B. Brady, L. R. Martin, and J. A. Syage, Geophys. Rev. Lett. 23, 1961 (1996).

    Article  ADS  Google Scholar 

  11. R. C. Sullivan, T. Thornberry, and J. P. D. Abbatt, Atmos. Chem. Phys. 4, 1301 (2004).

    Article  ADS  Google Scholar 

  12. A. E. Michel, C. R. Usher, and V. H. Grassian, Atmos. Environ. 37, 3201 (2003).

    Article  ADS  Google Scholar 

  13. P. K. Mogili, P. D. Kleiber, M. A. Young, and V. H. Grassian, J. Phys. Chem. A 110, 13799 (2006).

    Article  Google Scholar 

  14. H. Chen, C. O. Stanier, M. A. Young, and V. H. Grassian, J. Phys. Chem. A 115, 11979 (2011).

    Article  Google Scholar 

  15. C. R. Usher, A. E. Michel, D. Stec, and V. H. Grassian, Atmos. Environ. 37, 5337 (2003).

    Article  ADS  Google Scholar 

  16. K. Teranishi, N. Shimomura, S. Suzuki, and H. Itoh, Plasma Sources Sci. Technol. 18, 045011 (2009).

    Article  ADS  Google Scholar 

  17. D. V. Lopaev, E. M. Malykhin, and S. M. Zyryanov, J. Phys. D 44, 015201 (2011).

    Article  ADS  Google Scholar 

  18. D. V. Lopaev, E. M. Malykhin, and S. M. Zyryanov, J. Phys. D 44, 015202 (2011).

    Article  ADS  Google Scholar 

  19. D. Marinov, V. Guerra, O. Guaitella, J.-P. Booth, and A. Rousseau, Plasma Sources Sci. Technol. 22, 055018 (2013).

    Article  ADS  Google Scholar 

  20. D. Marinov, O. Guaitella, J.-P. Booth, and A. Rousseau, J. Phys. D 46, 032001 (2013).

    Article  ADS  Google Scholar 

  21. K. S. Klopovskiy, A. S. Kovalev, D. V. Lopaev, N. A. Popov, A. T. Rakhimov, and T. V. Rakhimova, JETP 80, 603 (1995).

    ADS  Google Scholar 

  22. V. N. Azyazov, A. P. Torbin, A. A. Pershin, P. A. Mikheyev, and M. C. Heaven, Chem. Phys. 463, 65 (2015).

    Article  ADS  Google Scholar 

  23. A. N. Vasiljeva, K. S. Klopovskiy, A. S. Kovalev, D. V. Lopaev, Y. A. Mankelevich, N. A. Popov, A. T. Rakhimov, and T. V. Rakhimova, J. Phys. D 37, 2455 (2004).

    Article  ADS  Google Scholar 

  24. V. I. Gibalov and G. Pitch, Zh. Fiz. Khim. 68, 931 (1994).

    Google Scholar 

  25. V. I. Gibalov, Zh. Fiz. Khim. 68, 926 (1994).

    Google Scholar 

  26. V. I. Gibalov and G. Pitch, Zh. Fiz. Khim. 68, 1130 (1994).

    Google Scholar 

  27. V. I. Gibalov, Zh. Fiz. Khim. 68, 1136 (1994).

    Google Scholar 

  28. G. Senn, J. D. Skalny, A. Stamatovic, N. J. Mason, P. Scheier, and T. D. Märk, Phys. Rev. Lett. 82, 5028 (1999).

    Article  ADS  Google Scholar 

  29. S. A. Rangwala, S. V. K. Kumar, E. Krishnakumar, and N. J. Mason, J. Phys. B 32, 3795 (1999).

    Article  ADS  Google Scholar 

  30. K. V. Kozlov and E. A. Abramovskaya (private communication).

  31. J. T. Gudmundsson, I. G. Kouznetsov, K. K. Patel, and M. A. Lieberman, J. Phys. D 34, 1100 (2001).

    Article  ADS  Google Scholar 

  32. N. L. Aleksandrov, Sov. Phys. Usp. 31, 101 (1988).

    Article  ADS  Google Scholar 

  33. M. Gupta and K. L. Baluja, J. Phys. B 38, 4057 (2005).

    Article  ADS  Google Scholar 

  34. H. Sabadil, P. Bachmann, and H. Kastelewicz, Beitr. Plasmaphys. 20, 283 (1980).

    Article  Google Scholar 

  35. S. Jodzis, Eur. Phys. J. Appl. Phys. 61, 24319 (2013).

    Article  ADS  Google Scholar 

  36. E. A. Abramovskaya, A. V. Zosimov, and A. Yu. Poroykov (private communication).

  37. D. X. Liu, P. Bruggeman, F. Iza, M. Z. Rong, and M. G. Kong, Plasma Sources Sci. Technol. 19, 025018 (2010).

    Article  ADS  Google Scholar 

  38. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  39. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  ADS  Google Scholar 

  40. B. J. Delley, Chem. Phys. 113, 7756 (2000).

    ADS  Google Scholar 

  41. O. B. Gadzhiev, S. K. Ignatov, M. Yu. Kulikov, A. M. Feigin, A. G. Razuvaev, P. G. Sennikov, and O. Schrems, J. Chem. Theory Comp. 9, 247 (2013).

    Article  Google Scholar 

  42. C. Meyer, J. Franzke, and E. L. Gurevich, J. Phys. D 45, 355205 (2012).

    Article  Google Scholar 

  43. T. G. Nichols and J. L. Rovey, in Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, TN, 2012, Paper AIAA 2012-0822.

    Google Scholar 

  44. G. Gastrow, S. Li, P. Repo, Ya. Bao, M. Putkonen, and H. Savin, Energy Procedia 38, 890 (2013).

    Article  Google Scholar 

  45. A. Ramírez-Solís, F. Jolibois, and L. Maron, Chem. Phys. Lett. 485, 16 (2010).

    Article  ADS  Google Scholar 

  46. T. V. Rakhimova, O. V. Braginsky, A. S. Kovalev, D. V. Lopaev, Yu. A. Mankelevich, E. M. Malykhin, A. T. Rakhimov, A. N. Vasilieva, S. M. Zyryanov, and M. R. Baklanov, IEEE Trans. Plasma Sci. 37, 1697 (2009).

    Article  ADS  Google Scholar 

  47. Yu. M. Emel’yanov and Yu. V. Filippov, Zh. Fiz. Khim. 36, 2263 (1962).

    Google Scholar 

  48. P. U. Uhlig, M. Haacke, and G. J. Pietsch, in Proceedings of the 14th Ozone World Congress, Dearborn, MI, 1999, Vol. 1, p. 145.

    Google Scholar 

  49. M. Taguchi, Y. Ochiai, R. Kawagoe, Y. Kato, K. Teranishi, S. Suzuki, and H. Itoh, Eur. Phys. J. Appl. Phys. 55, 13805 (2011).

    Article  ADS  Google Scholar 

  50. M. Taguchi, K. Yamashiro, T. Takano, and H. Itoh, Plasma Process. Polym. 4, 719 (2007).

    Article  Google Scholar 

  51. K. V. Kozlov, R. Brandenburg, H.-E. Wagner, A. M. Morozov, and P. Michel, J. Phys. D 38, 518 (2005).

    Article  ADS  Google Scholar 

  52. I. Stefanović, N. K. Bibinov, A. A. Deryugin, I. P. Vinogradov, A. P. Napartovich, and K. Wiesemann, Plasma Sources Sci. Technol. 10, 406 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Mankelevich.

Additional information

Original Russian Text © Yu.A. Mankelevich, E.N. Voronina, A.Yu. Poroykov, T.V. Rakhimova, D.G. Voloshin, A.A. Chukalovsky, 2016, published in Fizika Plazmy, 2016, Vol. 42, No. 10, pp. 912–926.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mankelevich, Y.A., Voronina, E.N., Poroykov, A.Y. et al. Plasmachemical and heterogeneous processes in ozonizers with oxygen activation by a dielectric barrier discharge. Plasma Phys. Rep. 42, 956–969 (2016). https://doi.org/10.1134/S1063780X16100056

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X16100056

Navigation