Skip to main content
Log in

Influences of oxygen content on characteristics of atmospheric pressure dielectric barrier discharge in argon/oxygen mixtures

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The dielectric barrier discharge generated in argon/oxygen mixtures at atmospheric pressure is investigated, and the effect of oxygen content on discharge characteristics at applied voltage of 4.5 kV is studied by means of electrical measurements and optical diagnostics. The results show that the filaments in the discharge regime become more densely packed with the increasing in the oxygen content, and the distribution of the filaments is more uniform in the gap. An increase in the oxygen content results in a decrease in the average power consumed and transported charges, while there exists an optimal value of oxygen content for the production of oxygen radicals. The maximal yield of oxygen radicals is obtained in mixtures of argon with 0.3% oxygen addition, and the oxygen radicals then decrease with the further increase in the oxygen content. The oxygen/argon plasma is employed to modify surface hydrophilicity of the PET films to estimate the influence of oxygen content on the surface treatment, and the static contact angles before and after the treatments are measured. The lowest contact angle is obtained at a 0.3% addition of oxygen to argon, which is in accordance with the optimum oxygen content for oxygen radicals generation. The electron density and electron temperature are estimated from the measured current and optical emission spectroscopy, respectively. The electron density is found to reduce significantly at a higher oxygen content due to the increased electron attachment, while the estimated electron temperature do not change apparently with the oxygen content.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.-E. Wagne, R. Brandenburg, A. Sonnenfeld, P. Michel. J.F. Behnke, Vacuum 71, 417 (2003)

    Article  ADS  Google Scholar 

  2. X. Xu, Thin Solid Films 390, 237 (2001)

    Article  ADS  Google Scholar 

  3. L. Bárdos, H. Baránková, Thin Solid Films 518, 6705 (2010)

    Article  Google Scholar 

  4. C. Tendero, C. Tixier, P. Tristant, J. Desmaison, P. Leprince, Spectrochim. Acta B 61, 2 (2003)

    Article  ADS  Google Scholar 

  5. D. Pappas, J. Vac. Sci. Technol. A 29, 020801 (2011)

    Article  Google Scholar 

  6. H. Conrads, M. Schmidt, Plasma Sources Sci. Technol. 9, 441 (2000)

    Article  ADS  Google Scholar 

  7. J.R. Roth, J. Rahel, X. Dai, D.M. Sherman, J. Phys. D 38, 555 (2005)

    Article  ADS  Google Scholar 

  8. R. Ion, R. Bartnikas, G. Czeremuszkin, M.R. Wertheimer, IEEE Trans. Plasma Sci. 31, 411 (2011)

    Google Scholar 

  9. G. Fridman, G. Friedman, A. Gutsol, A.B. Shekhter, V.N. Vasilets, A. Fridman, Plasma Process. Polym. 5, 503 (2008)

    Article  Google Scholar 

  10. Z. Fang, X. Xie, J. Li, H. Yang, Y. Qiu, E. Edmund, J. Phys. D 42, 085204 (2009)

    Article  ADS  Google Scholar 

  11. J. Huang, H. Li, W. Chen, G.H. Lv, X.Q. Wang, G.P. Zhang, K. Ostrikov, P.Y. Wang, S.Z. Yang, Appl. Phys. Lett. 99, 253701 (2011)

    Article  ADS  Google Scholar 

  12. O.J. Kwon, S.W. Myung, C.S. Le, H.S. Chio, J. Colloid Interface Sci. 295, 409 (2006)

    Article  ADS  Google Scholar 

  13. J.Z. Xu, P. Zhong, J.L. Li, J. Lin, Y. Diao, J. Zhang, Plasma Sci. Technol. 12, 601 (2010)

    Article  ADS  Google Scholar 

  14. D.S. Won, T.K. Kim, W.G. Lee, Surf. Interface Anal. 42, 1209 (2010)

    Article  Google Scholar 

  15. M.H. Jung, H.S. Choi, Thin Solid Films 515, 2295 (2006)

    Article  ADS  Google Scholar 

  16. Z. Xiong, X.P. Lu, A. Feng, Y. Pan, K. Ostrikov, Phys. Plasmas 17, 123502 (2010)

    Article  ADS  Google Scholar 

  17. D.D. Pappas, A.A. Bujanda, J.A. Orlicki, R.E. Jensen, Surf. Coat. Technol. 203, 830 (2008)

    Article  Google Scholar 

  18. Y. Jin, C.S. Ren, Q.Q. Fan, H.J. Yan, Z.F. Li, J.L. Zhang, D.Z. Wang, IEEE Trans. Plasma Sci. 40, 2706 (2012)

    Article  ADS  Google Scholar 

  19. V. Vancoppenolle, P.Y. Jouan, A. Ricard, M. Wautelet, J.P. Dauchot, M. Hecq, Appl. Surf. Sci. 205, 249 (2003)

    Article  ADS  Google Scholar 

  20. B. Zhao, L. Zhang, X. Wang, J. Yang, Carbon 50, 2710 (2012)

    Article  Google Scholar 

  21. S.Z. Li, Q. Wu, W. Yan, D.Z. Wang, H.S. Uhm, Phys. Plasmas 18, 1214 (2011)

    Google Scholar 

  22. G. Park, H. Lee, G. Kim, J.K. Lee, Plasma Process. Polym. 5, 569 (2008)

    Article  Google Scholar 

  23. K. Takeda, M. Kato, F. Jia, K. Ishikawa, H. Kano, M. Sekine, M. Hori, J. Appl. Phys. 46, 464006 (2013)

    Google Scholar 

  24. S.Z. Li, Q. Wu, J.L. Zhang, D.Z. Wang, H.S. Uhm, Thin Solid Films 519, 6990 (2011)

    Article  ADS  Google Scholar 

  25. S. Petit, P. Laurens, J. Amouroux, F. Arefi-Khonsari, Appl. Surf. Sci. 168, 300 (2000)

    Article  ADS  Google Scholar 

  26. C. Ton-That, D.O.H. Teare, P.A. Campbell, R.H. Bradley, Surf. Sci. 433/435, 278 (1999)

  27. P. Laurens, S. Petit, F. Arefi-Khonsari, Plasmas Polym. 8, 281 (2003)

    Article  Google Scholar 

  28. D. Papakonstantinou, E. Amanatides, D. Mataras, V. Ioannidis, P. Nikolopoulos, Plasma Processes Polym. 4, S1057 (2007)

    Article  Google Scholar 

  29. V.R. Santiago, A.A. Bujanda, B.E. Stein, D.D. Pappas, Plasma Processes Polym. 8, 31 (2011)

    Google Scholar 

  30. Z. Fang, S. Ji, J. Pan, T. Shao, C. Zhang, IEEE Trans. Plasma Sci. 40, 883 (2012)

    Article  ADS  Google Scholar 

  31. Z. Fang, T. Shao, S. Ji, J. Pan, C. Zhang, IEEE Trans. Plasma Sci. 40, 1884 (2012)

    Article  ADS  Google Scholar 

  32. N. Merbahi, R. Bartnikas, G. Czeremuszkin, Y. Salamero, P. Millet, J. Phys. D 37, 1664 (2004)

    Article  ADS  Google Scholar 

  33. X.C. Li, N. Zhao, T.Z. Fang, Z.H. Liu, L.C. Li, L.F. Dong, Plasma Sources Sci. Technol. 17, 015017 (2008)

    Article  ADS  Google Scholar 

  34. P. Reichen, A. Sonnenfeld, P.R. von Rohr, J. Phys. D 20, 055015 (2011)

    Google Scholar 

  35. Z. Fang, Y. Qiu, Y. Luo, J. Phys. D 36, 2980 (2003)

    Article  ADS  Google Scholar 

  36. Z. Fang, J. Lin, X. Xie, Y. Qiu, J. Phys. D 42, 085203 (2009)

    Article  ADS  Google Scholar 

  37. E. Wagenaars, R. Brandenburg, W.J.M. Brok, M.D. Bowden, H.-E. Wagner, J. Phys. D 39, 700 (2006)

    Article  ADS  Google Scholar 

  38. M.Y. Qian, C.S. Ren, D.Z. Wang, Y. Feng, J.L. Zhang, Plasma Sci. Technol. 12, 561 (2010)

    Article  ADS  Google Scholar 

  39. S.Z. Li, W.T. Huang, J.L. Zhang, D.Z. Wang, Appl. Phys. Lett. 94, 111501 (2009)

    Article  ADS  Google Scholar 

  40. Y.P. Raizer, Gas Discharge Physics (Springer-Verlag, New York, 1991)

  41. X.M. Zhu, Y.K. Pu, Plasma Sources Sci. Technol. 17, 024002 (2008)

    Article  ADS  Google Scholar 

  42. A. Yanguas-Gil, J. Cotrino, A.R. Gonzalez-Elipe, J. Appl. Phys. 99, 033104 (2006)

    Article  ADS  Google Scholar 

  43. R. Wu, Y. Li, S.G. Zhu, H.Y. Feng, L. Zhang, J.D. Wang. Spectrosc. Spect. Anal. 28, 731 (2008)

    Google Scholar 

  44. S. Forster, C. Mohr, W. Vio, Surf. Coat. Technol. 200, 827 (2005)

    Article  Google Scholar 

  45. G.D. Wei, C.S. Ren, M.Y. Qian, Q.Y. Nie, IEEE Trans. Plasma Sci. 39, 1842 (2011)

    Article  ADS  Google Scholar 

  46. A. Sarani, A.Y. Nikiforov, C. Leys, Phys. Plasmas 17, 063504 (2010)

    Article  ADS  Google Scholar 

  47. Y.H. Lee, C.H. Yi, M.J. Chung, G.Y. Yeom, Surf. Coat. Technol. 146-147, 474 (2001)

    Article  Google Scholar 

  48. Z. Fang, Y. Liu, K. Liu, T. Shao. C. Zhang, Vacuum 86, 1305 (2012)

    Article  ADS  Google Scholar 

  49. M. Síra, D. Trunec, P. Stahel, V. Bursíkova, Z. Navratil, J. Bursík, J. Phys. D 38, 621 (2005)

    Article  ADS  Google Scholar 

  50. N. De Geyter, R. Morent, C. Leys, Plasma Sources Sci. Technol. 15, 78 (2006)

    Article  ADS  Google Scholar 

  51. T. Shao, C. Zhang, K.H. Long, D.D. Zhang, J. Wang, P. Yan, Y.X. Zhou, Appl. Surf. Sci. 256, 3888 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Shao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Z., Shao, T., Wang, R. et al. Influences of oxygen content on characteristics of atmospheric pressure dielectric barrier discharge in argon/oxygen mixtures. Eur. Phys. J. D 70, 79 (2016). https://doi.org/10.1140/epjd/e2016-60438-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2016-60438-9

Navigation