Skip to main content
Log in

Compression dynamics of quasi-spherical wire arrays with different linear mass profiles

  • Plasma Dynamics
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Results of experimental studies of the implosion of quasi-spherical wire (or metalized fiber) arrays are presented. The goal of the experiments was to achieve synchronous three-dimensional compression of the plasma produced in different regions of a quasi-spherical array into its geometrical center. To search for optimal synchronization conditions, quasi-spherical arrays with different initial profiles of the linear mass were used. The following dependences of the linear mass on the poloidal angle were used: m l (θ) ∝ sin–1θ and m l (θ) ∝ sin–2θ. The compression dynamics of such arrays was compared with that of quasi-spherical arrays without linear mass profiling, m l (θ) = const. To verify the experimental data, the spatiotemporal dynamics of plasma compression in quasi-spherical arrays was studied using various diagnostics. The experiments on three-dimensional implosion of quasi-spherical arrays made it possible to study how the frozen-in magnetic field of the discharge current penetrates into the array. By measuring the magnetic field in the plasma of a quasi-spherical array, information is obtained on the processes of plasma production and formation of plasma flows from the wire/fiber regions with and without an additionally deposited mass. It is found that penetration of the magnetic flux depends on the initial linear mass profile m l (θ) of the quasi-spherical array. From space-resolved spectral measurements and frame imaging of plasma X-ray emission, information is obtained on the dimensions and shape of the X-ray source formed during the implosion of a quasi-spherical array. The intensity of this source is estimated and compared with that of the Z-pinch formed during the implosion of a cylindrical array.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. B. Bekhtev, V. D. Vikharev, S. V. Zakharov, V. P. Smirnov, M. V. Tulupov, and V. Ya. Tsarfin, Sov. Phys. JETP 68, 955 (1989).

    Google Scholar 

  2. R. B. Spielman, C. Deeney, G. A. Chandler, M. R. Douglas, D. L. Fehl, M. K. Matzen, D. H. McDaniel, T. J. Nash, J. L. Porter, T. W. L. Sanford, J. F. Seamen, W. A. Stygar, K. W. Struve, S. P. Breeze, J. S. McGurn, et al., Phys. Plasmas 5, 2105 (1998).

    Article  ADS  Google Scholar 

  3. X.-B. Huang, S.-T. Zhou, J.-K. Dan, X.-D. Ren, K.-L. Wang, S.-Q. Zhang, J. Li, Q. Xu, H.-Ch. Cai, S.-C. Duan, K. Ouyang, G.-H. Chen, C. Ji, B. Wei, S.-P. Feng, et al., Phys. Plasmas 22, 072707 (2015).

    Article  ADS  Google Scholar 

  4. J. H. Hammer, M. Tabak, S. C. Wilks, J. D. Lindl, D. S. Bailey, P. W. Rambo, A. Toor, and G. B. Zimmerman, Phys. Plasmas 6, 2129 (1999).

    Article  ADS  Google Scholar 

  5. Yu. G. Kalinin, A. S. Kingsep, V. P. Smirnov, Yu. L. Bakshaev, A. V. Bartov, P. I. Blinov, S. A. Dan’-ko, L. G. Dubas, A. V. Korel’skii, V. D. Korolev, V. I. Mizhiritskii, G. I. Ustroev, A. S. Chernenko, R. V. Chikin, A. Yu. Shashkov, et al., Plasma Phys. Rep. 32, 656 (2006).

    Article  ADS  Google Scholar 

  6. D. Klir, A. V. Shishlov, V. A. Kokshenev, P. Kubes, A. Yu. Labetsky, K. Rezac, J. Cikhardt, F. I. Fursov, B.M. Kovalchuk, J. Kravarik, N. E. Kurmaev, N. A. Ratakhin, O. Sila, and J. Stodulka, Plasma Phys. Controlled Fusion 55, 085012 (2013).

    Article  ADS  Google Scholar 

  7. V. D. Selemir, V. A. Demidov, V. F. Ermolovich, V. F. Ermolovich, G. M. Spirov, P. B. Repin, I. V. Pikulin, A. A. Volkov, A. P. Orlov, A. S. Boriskin, O. M. Tatsenko, A. N. Moiseenko, M. A. Barinov, I.M. Markevtsev, S. A. Kazakov, et al., Plasma Phys. Rep. 33, 381 (2007).

    Article  ADS  Google Scholar 

  8. H. Calamy, F. Lassalle, A. Loyen, F. Zucchini, J. P. Chittenden, F. Hamann, P. Maury, A. Georges, J. P. Bedoch, and A. Morell, Phys. Plasmas 15, 012701 (2008).

    Article  ADS  Google Scholar 

  9. M. C. Jones, D. J. Ampleford, M. E. Cuneo, R. Hohlfelder, C. A. Jennings, D. W. Johnson, B. Jones, M. R. Lopez, J. MacArthur, J. A. Mills, T. Preston, G. A. Rochau, M. Savage, D. Spencer, D. B. Sinars, et al., Rev. Sci. Instrum. 85, 083501 (2014).

    Article  ADS  Google Scholar 

  10. S. G. Alikhanov, in Proceedings of the 6th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Berchtesgaden, 1976 (IAEA, Vienna, 1977), Vol. 3, p. 517.

    Google Scholar 

  11. V. N. Mokhov, V. K. Chernyshev, V. B. Yakubov, M. S. Protasov, V. M. Danov, and E. I. Zharinov, Sov. Phys. Doklady 24, 557 (1979).

    ADS  Google Scholar 

  12. R. Kirkpatrick, I. Lindemuth, and M. Ward, Fusion Technol. 27, 201 (1995).

    Google Scholar 

  13. J. H. Degnan, F. M. Lehr, J. D. Beason, G. P. Baca, D. E. Bell, A. L. Chesley, S. K. Coffey, D. Dietz, D. B. Dunlap, S. E. Englert, T. J. Englert, D. G. Gale, J. D. Graham, J. J. Havranek, C. D. Holmberg, et al., Phys. Rev. Lett. 74, 98 (1995).

    Article  ADS  Google Scholar 

  14. T. J. Nash, D. H. McDaniel, R. J. Leeper, C. D. Deeney, T. W. L. Sanford, K. Struve, and J. S. DeGroot, Phys. Plasmas 12, 052705 (2005).

    Article  ADS  Google Scholar 

  15. E. P. Bol’shakov, M. A. Vasilevskii, V. M. Vodovozov, V. A. Glukhikh, V. L. Demidov, V. V. Eremkin, V. I. Engel’ko, E. G. Yankin, E. V. Grabovskii, A. N. Gribov, and V. P. Smirnov, Izv. RAN, Energetika, No. 4, 3 (2013).

    Google Scholar 

  16. V. P. Smirnov, S. V. Zakharov, and E. V. Grabovskii, JETP Lett. 81, 442 (2005).

    Article  ADS  Google Scholar 

  17. S. V. Zakharov, A. F. Nikiforov, V. G. Novikov, A. Yu. Krukovskii, A. N. Starostin, and A. E. Stepanov, Preprint No. 11 (Keldysh Inst. Applied Mathematics, Russ. Acad. Sci., Moscow, 1994).

    Google Scholar 

  18. R. Benattar, S. V. Zakharov, A. F. Nikiforov, V. A. Gasilov, A. Yu. Krukovskii, and V. S. Zakharov, Phys. Plasmas 6, 175 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  19. V. P. Smirnov, Plasma Phys. Controlled Fusion 33, 1697 (1991).

    Article  ADS  Google Scholar 

  20. E. V. Grabovskii, A. N. Gritsuk, V. P. Smirnov, V. V. Aleksandrov, G. M. Oleinik, I. N. Frolov, Ya. N. Laukhin, A. N. Gribov, A. A. Samokhin, P. V. Sasorov, K. N. Mitrofanov, and S. F. Medovshchikov, JETP Lett. 89, 315 (2009).

    Article  ADS  Google Scholar 

  21. V. P. Smirnov, E. V. Grabovsky, and S. V. Zakharov, Nukleonika 57, 215 (2012).

    Google Scholar 

  22. Y. Y. Chu, Z. H. Li, J. L. Yang, N. Ding, R. K. Xu, Z. P. Xu, F. Ye, F. Q. Zhang, and D. Y. Chen, Plasma Phys. Controlled Fusion 54, 105020 (2012).

    Article  ADS  Google Scholar 

  23. Y. Zhang, N. Ding, Z. Li, R. Xu, D. Chen, F. Ye, X. Zhou, F. Chen, J. Chen, L. Li, D. Xiao, S. Sun, C. Xue, X. Shu, and J. Wang, Phys. Plasmas 22, 020703 (2015).

    Article  ADS  Google Scholar 

  24. S. V. Lebedev, D. J. Ampleford, S. N. Bland, and G. N. Hall, AIP Conf. Proc. 808, 69 (2006).

    Article  ADS  Google Scholar 

  25. V. V. Aleksandrov, G. S. Volkov, E. V. Grabovski, A. N. Gribov, A. N. Gritsuk, K. N. Mitrofanov, G.M. Oleinik, I. N. Frolov, V. A. Barsuk, C. F. Medovshchikov, and P. V. Sasorov, Plasma Phys. Rep. 38, 315 (2012).

    Article  ADS  Google Scholar 

  26. V. V. Aleksandrov, V. A. Gasilov, E. V. Grabovski, A. N. Gritsuk, Ya. N. Laukhin, K. N. Mitrofanov, G.M. Oleinik, O. G. Ol’khovskaya, P. V. Sasorov, V. P. Smirnov, I. N. Frolov, and A. P. Shevel’ko, Plasma Phys. Rep. 40, 939 (2014).

    Article  ADS  Google Scholar 

  27. V. A. Gasilov, A. S. Boldarev, S. V. D’yachenko, O. G. Ol’khovskaya, E. L. Kartasheva, S. N. Boldyrev, G. A. Bagdasarov, I. V. Gasilova, M. S. Boyarov, and V. A. Shmyrov, Mat. Model. 24, 55 (2012).

    Google Scholar 

  28. F. S. Felber and N. Rostoker, Phys. Fluids 24, 1049 (1981).

    Article  ADS  Google Scholar 

  29. S. V. Lebedev, F. N. Beg, S. N. Bland, J. P. Chittenden, A. E. Dangor, M. G. Haines, K. H. Kwek, S. A. Pikuz, and T. A. Shelkovenko, Phys. Plasmas 8, 3734 (2001).

    Article  ADS  Google Scholar 

  30. E. V. Grabovski, K. N. Mitrofanov, A. Yu. Koshelev, A. A. Samokhin, V. V. Aleksandrov, A. N. Gritsuk, Ya. N. Laukhin, G. M. Oleinik, and I. N. Frolov, Plasma Phys. Rep. 37, 586 (2011).

    Article  ADS  Google Scholar 

  31. V. V. Aleksandrov, A. V. Branitskii, G. S. Volkov, E. V. Grabovski, M. V. Zurin, S. L. Nedoseev, G. M. Oleinik, A. A. Samokhin, P. V. Sasorov, V. P. Smirnov, M. V. Fedulov, and I. N. Frolov, Plasma Phys. Rep. 27, 89 (2001).

    Article  ADS  Google Scholar 

  32. V. V. Alexandrov, I. N. Frolov, M. V. Fedulov, E. V. Grabovsky, K. N. Mitrofanov, S. L. Nedoseev, G. M. Oleinik, I. Yu. Porofeev, A. A. Samokhin, P. V. Sasorov, V.P. Smirnov, G. S. Volkov, M. V. Zurin, and G. G. Zukakishvili, IEEE Trans. Plasma Sci. 30, 559 (2002).

    Article  ADS  Google Scholar 

  33. V. V. Aleksandrov, E. V. Grabovski, K. N. Mitrofanov, G. M. Oleinik, V. P. Smirnov, P. V. Sasorov, and I. N. Frolov, Plasma Phys. Rep. 30, 568 (2004).

    Article  ADS  Google Scholar 

  34. E. V. Grabovski, V. V. Aleksandrov, G. S. Volkov, V. A. Gasilov, A. N. Gribov, A. N. Gritsuk, S. V. D’yachenko, V. I. Zaitsev, S. F. Medovshchikov, K. N. Mitrofanov, Ya. N. Laukhin, G. M. Oleinik, O. G. Ol’khovskaya, A. A. Samokhin, P. V. Sasorov, et al., Plasma Phys. Rep. 34, 815 (2008).

    Article  ADS  Google Scholar 

  35. K. N. Mitrofanov, E. V. Grabovski, A. N. Gritsuk, Ya. N. Laukhin, V. V. Aleksandrov, G. M. Oleinik, S. F. Medovshchikov, and A. P. Shevel’ko, Plasma Phys. Rep. 39, 62 (2013).

    Article  ADS  Google Scholar 

  36. I. V. Glazyrin, E. V. Grabovski, G. G. Zukakishvili, A. V. Karpeev, K. N. Mitrofanov, G. M. Oleinik, and A. A. Samokhin, Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez, No. 2, 67 (2009).

    Google Scholar 

  37. K. N. Mitrofanov, V. V. Aleksandrov, E. V. Grabovski, E. A. Ptichkina, E. A. Gritsuk, G. M. Oleinik, I. N. Frolov, and Ya. N. Laukhin, Plasma Phys. Rep. 40, 679 (2014).

    Article  ADS  Google Scholar 

  38. V. V. Aleksandrov, K. N. Mitrofanov, A. N. Gritsuk, I. N. Frolov, E. V. Grabovski, and Ya. N. Laukhin, Plasma Phys. Rep. 39, 809 (2013).

    Article  ADS  Google Scholar 

  39. V. V. Aleksandrov, E. V. Grabovski, A. N. Gritsuk, Ya. N. Laukhin, S. F. Medovshchikov, K. N. Mitrofanov, G. M. Oleinik, P. V. Sasorov, M. V. Fedulov, and I. N. Frolov, Plasma Phys. Rep. 36, 482 (2010).

    Article  ADS  Google Scholar 

  40. V. V. Aleksandrov, G. S. Volkov, E. V. Grabovski, A. N. Gritsuk, I. G. Malyutin, K. N. Mitrofanov, G. M. Oleinik, and A. P. Shevel’ko, in XLII International Zvenigorod Conference on Plasma Physics and Controlled Fusion, Zvenigorod, 2015, Book of Abstracts, p. 173.

    Google Scholar 

  41. V. G. Novikov and S. V. Zakharov, J. Quant. Spectrosc. Radiat. Transfer 81, 339 (2003).

    Article  ADS  Google Scholar 

  42. J. E. Bailey, G. A. Chandler, S. A. Slutz, G. R. Bennett, G. Cooper, J. S. Lash, S. Lazier, R. Lemke, T. J. Nash, D. S. Nielsen, T. C. Moore, C. L. Ruiz, D. G. Schroen, R. Smelser, J. Torres, et al., Phys. Rev. Lett. 89, 095004 (2002).

    Article  ADS  Google Scholar 

  43. T. W. L. Sanford, R. W. Lemke, R. C. Mock, G. A. Chandler, R. J. Leeper, C. L. Ruiz, D. L. Peterson, R. E. Chrien, G. C. Idzorek, R. G. Watt, and J. P. Chittenden, Phys. Plasmas 9, 3573 (2002).

    Article  ADS  Google Scholar 

  44. S. A. Slutz, J. E. Bailey, G. A. Chandler, G. R. Bennett, G. Cooper, J. S. Lash, S. Lazier, P. Lake, R. W. Lemke, T. A. Mehlhorn, T. J. Nash, D. S. Nielson, J. McGurn, T. C. Moore, C. L. Ruiz, et al., Phys. Plasmas 10, 1875 (2003).

    Article  ADS  Google Scholar 

  45. J. E. Bailey, G. A. Chandler, S. A. Slutz, I. Golovkin, P. W. Lake, J. J. MacFarlane, R. C. Mancini, T. J. Burris-Mog, G. Cooper, R. J. Leeper, T. A. Mehlhorn, T. C. Moore, T. J. Nash, D. S. Nielsen, C. L. Ruiz, et al., Phys. Rev. Lett. 92, 085002 (2004).

    Article  ADS  Google Scholar 

  46. A. A. Andreev, A. A. Levkovskii, K. Yu. Platonov, S. V. Zakharov, S. Yu. Gus’kov, V. B. Rozanov, D. V. Il’in, and V. E. Sherman, in Proceedings of the 30th EPS Conference on Controlled Fusion and Plasma Physics, St. Petersburg, 2003, ECA 27A, P-3.59 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Mitrofanov.

Additional information

Original Russian Text © K.N. Mitrofanov, V.V. Aleksandrov, A.N. Gritsuk, E.V. Grabovski, I.N. Frolov, Ya.N. Laukhin, G.M. Oleinik, O.G. Ol’khovskaya, 2016, published in Fizika Plazmy, 2016, Vol. 42, No. 9, pp. 813–840.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitrofanov, K.N., Aleksandrov, V.V., Gritsuk, A.N. et al. Compression dynamics of quasi-spherical wire arrays with different linear mass profiles. Plasma Phys. Rep. 42, 834–858 (2016). https://doi.org/10.1134/S1063780X16090063

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X16090063

Navigation