Skip to main content
Log in

Increase in the energy density of the pinch plasma in 3D implosion of quasi-spherical wire arrays

  • Plasma Dynamics
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Results are presented from experimental studies of the characteristics of the soft X-ray (SXR) source formed in the implosion of quasi-spherical arrays made of tungsten wires and metalized kapron fibers. The experiments were carried out at the Angara-5-1 facility at currents of up to 3 MA. Analysis of the spatial distribution of hard X-ray emission with photon energies above 20 keV in the pinch images taken during the implosion of quasi-spherical tungsten wire arrays (QTWAs) showed that a compact quasi-spherical plasma object symmetric with respect to the array axis formed in the central region of the array. Using a diffraction grazing incidence spectrograph, spectra of SXR emission with wavelengths of 20–400 Å from the central, axial, and peripheral regions of the emission source were measured with spatial resolutions along the array radius and height in the implosion of QTWAs. It is shown that the emission spectra of the SXR sources formed under the implosion of quasi-spherical and cylindrical tungsten wire arrays at currents of up to 3 MA have a maximum in the wavelength range of 50–150 Å. It is found that, during the implosion of a QTWA with a profiled linear mass, a redistribution of energy in the emission spectrum takes place, which indicates that, during 3D implosion, the energy of longitudinal motion of the array material additionally contributes to the radiation energy. It is also found that, at close masses of the arrays and close values of the current in the range of 2.4−3 MA, the average energy density in the emission source formed during the implosion of a quasi-spherical wire array is larger by a factor of 7 than in the source formed during the implosion of a cylindrical wire array. The experimental data were compared with results of 3D simulations of plasma dynamics and radiation generation during the implosion of quasi-spherical wire arrays with a profiled mass by using the MARPLE-3D radiative magnetohydrodynamic code, developed at the Keldysh Institute of Applied Mathematics, Russian Academy of Sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. P. Smirnov, E. V. Grabovskii, and S. V. Zakharov, JETP Lett. 81, 442 (2005).

    Article  ADS  Google Scholar 

  2. D. D. Ryutov, M. S. Derzon, and M. K. Matzen, Rev. Mod. Phys. 72, 167 (2000).

    Article  ADS  Google Scholar 

  3. M. G. Haines, Plasma Phys. Controlled Fusion 53, 093001 (2011).

    Article  ADS  Google Scholar 

  4. E. V. Grabovskii, A. N. Gritsuk, V. P. Smirnov, V. V. Aleksandrov, G. M. Oleinik, I. N. Frolov, Ya. N. Laukhin, A. N. Gribov, A. A. Samokhin, P. V. Sasorov, K. N. Mitrofanov, and S. F. Medovshchikov, JETP Lett. 89, 315 (2009).

    Article  ADS  Google Scholar 

  5. V. V. Aleksandrov, G. S. Volkov, E. V. Grabovski, A. N. Gribov, A. N. Gritsuk, Ya. N. Laukhin, K.N. Mitrofanov, G. M. Oleinik, P. V. Sasorov, and I. N. Frolov, Plasma Phys. Rep. 38, 315 (2012).

    Article  ADS  Google Scholar 

  6. E. V. Grabovski, V. V. Aleksandrov, G. M. Volkov, V. A. Gasilov, A. N. Gribov, A. N. Gritsuk, S. V. D’yachenko, V. I. Zaitsev, S. F. Medovshchikov, K. N. Mitrofanov, Ya. N. Laukhin, G. M. Oleinik, O. G. Ol’khovskaya, A. A. Samokhin, P. V. Sasorov, and I. N. Frolov, Plasma Phys. Rep. 34, 815 (2008).

    Article  ADS  Google Scholar 

  7. V. V. Aleksandrov, E. V. Grabovski, A. N. Gribov, A. N. Gritsuk, S. F. Medovshchikov, K. N. Mitrofanov, and G. M. Oleinik, Plasma Phys. Rep. 35, 136 (2009).

    Article  ADS  Google Scholar 

  8. V. V. Alexandrov, V. E. Fortov, I. N. Frolov, E. V. Grabovskii, I. K. Krasyuk, I. V. Lomonosov, K. N. Mitrofanov, P. P. Pashinin, A. Yu. Semenov, V. P. Smirnov, G. M. Oleinik, I. Yu. Porofeev, V. I. Vovchenko, and G. G. Zukakishvili, in Proceedings of the 13th International Conference on High-Power Particle Beams, Nagaoka, 2000, p. 142.

  9. V. V. Aleksandrov, E. V. Grabovski, A. N. Gribov, A. N. Gritsuk, S. F. Medovshchikov, G. M. Oleinik, and P. V. Sasorov, Plasma Phys. Rep. 34, 278 (2008).

    Article  ADS  Google Scholar 

  10. G. S. Volkov, E. V. Grabovskii, V. I. Zaitsev, G. G. Zukakishvili, M. V. Zurin, K. N. Mitrofanov, S. L. Nedoseev, G. M. Oleinik, I. Yu. Porofeev, V. P. Smirnov, and I. N. Frolov, Instrum. Exp. Tech. 47, 201 (2004).

    Article  Google Scholar 

  11. http://henke.lbl.gov/optical-constants/index.html

  12. A. P. Shevel’ko, D. E. Bliss, E. D. Kazakov, M. G. Mazarakis, J. S. McGurn, L. V. Knight, K. W. Struve, I. Yu. Tolstikhina, and T. J. Weeks, Plasma Phys. Rep. 34, 944 (2008).

    Article  ADS  Google Scholar 

  13. A. V. Bessarab, S. A. Pospelova, and V. A. Tokarev, Instrum. Exp. Tech. 43, 573 (2000).

    Article  Google Scholar 

  14. K. N. Mitrofanov, E. V. Grabovski, A. N. Gritsuk, Ya. N. Laukhin, V. V. Aleksandrov, G. M. Oleinik, S. F. Medovshchikov, and A. P. Shevel’ko, Plasma Phys. Rep. 39, 62 (2013).

    Article  ADS  Google Scholar 

  15. I. Yu. Vichev, V. G. Novikov, and A. D. Solomyannaya, Math. Models Comp. Simulat. 1, 470 (2009).

    Article  Google Scholar 

  16. A. N. Gritsuk, V. V. Aleksandrov, E. V. Grabovskiy, Ya.N. Laukhin, K. N. Mitrofanov, G. M. Oleinik, G. S. Volkov, I. N. Frolov, and A. P. Shevel’ko, IEEE Trans. Plasma Sci. 41, 3184 (2013).

    Article  ADS  Google Scholar 

  17. V. A. Gasilov, A. S. Boldarev, S. V. D’yachenko, O. G. Ol’khovskaya, E. L. Kartasheva, S. N. Boldyrev, G. A. Bagdasarov, I. V. Gasilova, M. S. Boyarov, and V. A. Shmyrov, Mat. Model. 24, 55 (2012).

    MATH  Google Scholar 

  18. V. Gasilov, A. Boldarev, S. Dyachenko, O. Olkhovskaya, E. Kartasheva, G. Bagdasarov, S. Boldyrev, I. Gasilova, V. Shmyrov, S. Tkachenko, J. Grunenwald, and T. Maillard, in Advances in Parallel Computing, Vol. 22: Applications, Tools and Techniques on the Road to Exascale Computing, Ed. by K. De Bosschere, E. H. D’Hollander, G. R. Joubert, D. Padua, F. Peters, and M. Sawyer (IOS Press, Amsterdam, 2012), p. 235.

  19. A. F. Nikiforov, V. G. Novikov, and V. B. Uvarov, Quantum-Statistical Models of High-Temperature Plasma and Methods for Calculating Rosseland Mean Free Paths and Equations of State (Fizmatlit, Moscow, 2000) [in Russian].

    Google Scholar 

  20. V. V. Aleksandrov, A. V. Branitsky, G. S. Volkov, E.V. Grabovski, M. V. Zurin, S. L. Nedoseev, G. M. Oleinik, A. A. Samokhin, P. V. Sasorov, V. P. Smirnov, M. V. Fedulov, and I. N. Frolov, Plasma Phys. Rep. 27, 89 (2001).

    Article  ADS  Google Scholar 

  21. V. I. Oreshkin, Phys. Plasmas 15, 092103 (2008).

    Article  ADS  Google Scholar 

  22. I. I. Beilis, R. B. Baksht, V. I. Oreshkin, A. G. Russkikh, S. A. Chaikovskii, A. Yu. Labetskii, N. A. Ratakhin, and A. V. Shishlov, Phys. Plasmas 15, 0123501 (2008).

    Article  ADS  Google Scholar 

  23. V. V. Aleksandrov, E. V. Grabovski, A. N. Gritsuk, Ya.N. Laukhin, S. F. Medovshchikov, K. N. Mitrofanov, G. M. Oleinik, P. V. Sasorov, M. V. Fedulov, and I. N. Frolov, Plasma Phys. Rep. 36, 482 (2010).

    Article  ADS  Google Scholar 

  24. K. N. Mitrofanov, E. V. Grabovski, G. M. Oleinik, V. V. Aleksandrov, A. N. Gritsuk, I. N. Frolov, Ya. N. Laukhin, P. V. Sasorov, and A. A. Samokhin, Plasma Phys. Rep. 38, 797 (2012).

    Article  ADS  Google Scholar 

  25. V. V. Aleksandrov, K. N. Mitrofanov, A. N. Gritsuk, I. N. Frolov, E. V. Grabovskii, and Ya. N. Laukhin, Plasma Phys. Rep. 39, 809 (2013).

    Article  ADS  Google Scholar 

  26. P. Yu. Edmund, M. E. Cuneo, M. P. Desjarlais, R. W. Lemke, D. B. Sinars, T. A. Haill, E. M. Waisman, G. R. Bennett, C. A. Jennings, T. A. Mehlhorn, T. A. Brunner, H. L. Hanshaw, J. L. Porter, W. A. Stygar, and L. I. Rudakov, Phys. Plasmas 15, 056301 (2008).

    Article  ADS  Google Scholar 

  27. A. P. Orlov and B. G. Repin, Mat. Model. 26, 3 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Aleksandrov.

Additional information

Original Russian Text © V.V. Aleksandrov, V.A. Gasilov, E.V. Grabovski, A.N. Gritsuk, Ya.N. Laukhin, K.N. Mitrofanov, G.M. Oleinik, O.G. Ol’khovskaya, P.V. Sasorov, V.P. Smirnov, I.N. Frolov, A.P. Shevel’ko, 2014, published in Fizika Plazmy, 2014, Vol. 40, No. 12, pp. 1057–1073.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksandrov, V.V., Gasilov, V.A., Grabovski, E.V. et al. Increase in the energy density of the pinch plasma in 3D implosion of quasi-spherical wire arrays. Plasma Phys. Rep. 40, 939–954 (2014). https://doi.org/10.1134/S1063780X14110014

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X14110014

Keywords

Navigation