Skip to main content
Log in

Dynamics of the spatial structure of pulsed discharges in dense gases in point cathode−plane anode gaps and their erosion effect on the plane electrode surface

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The dynamics of the spatial structure of the plasma of pulsed discharges in air and nitrogen in a nonuniform electric field and their erosion effect on the plane anode surface were studied experimentally. It is established that, at a nanosecond front of the voltage pulse, a diffuse discharge forms in the point cathode–plane anode gap due to the ionization wave propagating from the cathode. As the gap length decreases, the diffuse discharge transforms into a spark. A bright spot on the anode appears during the diffuse discharge, while the spark channel forms in the later discharge stage. The microstructure of autographs of anode spots and spark channels in discharges with durations of several nanoseconds is revealed. The autographs consist of up to 100 and more microcraters 5–100 μm in diameter. It is shown that, due to the short duration of the voltage pulse, a diffuse discharge can be implemented, several pulses of which do not produce appreciable erosion on the plane anode or the soot coating deposited on it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Laroussi, IEEE Trans. Plasma Sci. 37, 714 (2009).

    Article  ADS  Google Scholar 

  2. S. E. Alexandrov, I. V. Kretusheva, and M. V. Mishin, ECS Trans. 25, 943 (2009).

    Article  Google Scholar 

  3. E. Kh. Baksht, A. G. Burachenko, I. D. Kostyrya, M. I. Lomaev, D. V. Rybka, M. A. Shulepov, and V. F. Tarasenko, J. Phys. D 42, 185201 (2009).

    Article  ADS  Google Scholar 

  4. G. Kaklamani, J. Bowen, N. Mehrban, H. Dong, and L. M. Grover, Appl. Surf. Sci. 273, 787 (2013).

    Article  ADS  Google Scholar 

  5. P. K. Chu and X. P. Lu, Low Temperature Plasma Technology. Methods and Applications (CRC, Boca Raton, 2014).

    Google Scholar 

  6. A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, D. V. Grigor’ev, M. A. Shulepov, and V. F. Tarasenko, Izv. Vyssh. Uchebn. Zaved., Fizika 58, 86 (2015).

    Google Scholar 

  7. Yu. D. Korolev and G. A. Mesyats, Physics of Pulsed Gas Breakdown (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  8. G. A. Mesyats, V. V. Osipov, and V. F. Tarasenko, Pulsed Gas Lasers (Nauka, Moscow, 1991; SPIE Press, Bellingham, 1995).

    Google Scholar 

  9. H. Piquet, S. Bhosle, R. Diez, and M. V. Erofeev, IEEE Trans. Plasma Sci. 38, 2531 (2010).

    Article  ADS  Google Scholar 

  10. Yu. S. Akishev, G. I. Aponin, M. E. Grushin, V. B. Karal’nik, A. E. Monich, M. V. Pan’kin, and N. I. Trushkin, Plasma Phys. Rep. 33, 584 (2007).

    Article  ADS  Google Scholar 

  11. Yu. S. Akishev, M. E. Grushin, V. B. Karal’nik, V. B. Kochetov, A. E. Monich, A. P. Napartovich, and N. I. Trushkin, Plasma Phys. Rep. 29, 176 (2003).

    Article  ADS  Google Scholar 

  12. L. P. Babich, High-Energy Phenomena in Electric Discharges in Dense Gases: Theory, Experiment, and Natural Phenomena (ISTC Science and Technology Series, Vol. 2) (Futurepast, Arlington, VA, 2003).

    Google Scholar 

  13. Runaway Electrons Preionized Diffuse Discharges, Ed. by V. F. Tarasenko (Nova Science, New York, 2014).

  14. V. I. Karelin, A. A. Tren’kin, V. V. Gorokhov, P. B. Repin, and S. N. Buranov, in Generation of Runaway Electrons and X-rays in Elevated-Pressure Gas Discharges, Ed. by V. F. Tarasenko (STT, Tomsk, 2015), Chap. 4 [in Russian].

  15. S. N. Buranov, V. V. Gorokhov, V. I. Karelin, A. I. Pavlovskii, and P. B. Repin, Quant. Electron. 21, 806 (1991).

    ADS  Google Scholar 

  16. S. N. Buranov, V. V. Gorokhov, V. I. Karelin, and P. B. Repin, in Studies on Plasma Physics, Ed. by V. D. Selemir and A. E. Dubinov (RFYaTs-VNIIEF, Sarov, 1998), p. 39 [in Russian].

  17. A. V. Perminov and A. A. Tren’kin, Tech. Phys. 50, 1158 (2005).

    Article  Google Scholar 

  18. Lai Guiyu, Expended Abstract of Candidate’s (Phys.−Math.) Dissertation (Moscow Engineering Physics Institute, Moscow, 2004).

    Google Scholar 

  19. V. I. Karelin and A. A. Tren’kin, Tech. Phys. 53, 314 (2008).

    Article  Google Scholar 

  20. A. G. Rep’ev, P. B. Repin, and V. S. Pokrovskii, Tech. Phys. 52, 52 (2007).

    Article  Google Scholar 

  21. P. B. Repin and A. G. Rep’ev, in Studies on Plasma Physics, Ed. by V. D. Selemir and A. E. Dubinov (RFYaTs-VNIIEF, Sarov, 2003), p. 143 [in Russian].

  22. A. A. Tren’kin, V. I. Karelin, and Yu. M. Shibitov, Izv. Vyssh. Uchebn. Zaved., Fizika 57, 284 (2014).

    Google Scholar 

  23. V. I. Karelin and A. A. Tren’kin, Tech. Phys. 53, 1236 (2008).

    Article  Google Scholar 

  24. M. V. Erofeev, E. Kh. Baksht, A. G. Burachenko, and V. F. Tarasenko, Tech. Phys. 60, 1316 (2015).

    Article  Google Scholar 

  25. V. F. Tarasenko, E. Kh. Baksht, A. G. Burachenko, and M. V. Erofeev, High Voltage Eng. 39, 2105 (2013).

    Google Scholar 

  26. E. Kh. Baksht, A. G. Burachenko, M. V. Erofeev, and V. F. Tarasenko, Plasma Phys. Rep. 40, 404 (2014).

    Article  ADS  Google Scholar 

  27. S. V. Korotkov, Yu. V. Aristov, A. K. Kozlov, D. A. Korotkov, A. G. Lyublinskii, and G. L. Spichkin, Instrum. Exp. Tech. 55, 605 (2012).

    Article  Google Scholar 

  28. G. A. Mesyats, Generation of High-Power Nanosecond Pulses (Sovetskoe radio, Moscow, 1974) [in Russian].

    Google Scholar 

  29. T. Y. Chang, Rev. Sci. Instrum. 44, 405 (1973).

    Article  ADS  Google Scholar 

  30. V. E. Gmurman, Probability Theory and Mathematical Statistics (Vysshaya Shkola, Moscow, 1997) [in Russian].

    MATH  Google Scholar 

  31. V. F. Tarasenko, D. V. Beloplotov, and M. I. Lomaev, Plasma Phys. Rep. 41, 832 (2015).

    Article  ADS  Google Scholar 

  32. E. D. Lozanskii and O. B. Firsov, Theory of Spark (Atomizdat, Moscow, 1975) [in Russian].

    Google Scholar 

  33. O. A. Sinkevich, High Temp. 41, 609 (2003).

    Article  Google Scholar 

  34. M. Arrayas, M. Fontelos, and J. Trueba, Phys. Rev. Lett. 95, 165001 (2005).

    Article  ADS  Google Scholar 

  35. A. Rocco, U. Ebert, and W. Hundsdorfer, Phys. Rev. E 66, 035102 (2002).

    Article  ADS  Google Scholar 

  36. M. Arrayas, U. Ebert, and W. Hundsdorfer, Phys. Rev. Lett. 88, 174502 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Erofeev.

Additional information

Original Russian Text © E.Kh. Baksht, O.M. Blinova, M.V. Erofeev, V.I. Karelin, V.S. Ripenko, V.F. Tarasenko, A.A. Trenkin, Yu.M. Shibitov, M.A. Shulepov, 2016, published in Fizika Plazmy, 2016, Vol. 42, No. 9, pp. 859–870.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baksht, E.K., Blinova, O.M., Erofeev, M.V. et al. Dynamics of the spatial structure of pulsed discharges in dense gases in point cathode−plane anode gaps and their erosion effect on the plane electrode surface. Plasma Phys. Rep. 42, 876–886 (2016). https://doi.org/10.1134/S1063780X16090014

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X16090014

Navigation