Skip to main content
Log in

Electrostatic solitary structures in a magnetized nonextensive plasma with q-distributed electrons

  • Nonlinear Phenomena
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A rigorous theoretical investigation has been made of obliquely propagating electrostatic solitary structures in a magnetized plasma, taking into account the effect of nonextensive electrons. By employing the reductive perturbation method, the basic characteristics of obliquely propagating ion-acoustic (IA) solitary waves (SWs) in a cold magnetized electron-ion plasma (consisting of inertial ions and noninertial q-distributed electrons) have been addressed. The Korteweg-de Vries equation is derived and its numerical solution is obtained. It has been shown that the effects of electron nonextensivity and external magnetic field significantly modify the natures of the small but finite-amplitude IA SWs. The present analysis may be useful to understand and demonstrate the dynamical properties of IA SWs in different astrophysical and cosmological scenarios (viz. stellar polytropes, hadronic matter, quark-gluon plasma, protoneutron stars, dark-matter halos, etc.).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Asaduzzaman and A. A. Mamun, J. Plasma Phys. 78, 601 (2012).

    Article  ADS  Google Scholar 

  2. W. M. Moslem, J. Plasma Phys. 61, 177 (1999).

    Article  ADS  Google Scholar 

  3. S. Pervin, S. S. Duha, M. Asaduzzaman, and A. A. Mamun, J. Plasma Phys. 79, 1 (2013).

    Article  ADS  Google Scholar 

  4. M. V. Masud, M. Asaduzzaman, and A. A. Mamun, J. Plasma Phys. 79, 215 (2013).

    Article  ADS  Google Scholar 

  5. N. N. Rao and P. K. Shukla, Phys. Plasmas 4, 636 (1997).

    Article  ADS  Google Scholar 

  6. P. K. Shukla and A. Mamun, Introduction to Dusty Plasma Physics (IOP, Bristol, 2002).

    Book  Google Scholar 

  7. M. Asaduzzaman and A. A. Mamun, J. Plasma Phys. 78, 125 (2012).

    Article  ADS  Google Scholar 

  8. M. Asaduzzaman and A. A. Mamun, Astrophys. Space Sci. 341, 535 (2012).

    Article  MATH  ADS  Google Scholar 

  9. M. M. Masud, M. Asaduzzaman, and A. A. Mamun, Phys. Plasmas 19, 103706 (2012).

    Article  ADS  Google Scholar 

  10. A. A. Mamun, S. Tasnim, and P. K. Shukla, IEEE Trans. Plasma Sci. 38, 11 (2010).

    Article  Google Scholar 

  11. M. M. Masud, M. Asaduzzaman, and A. A. Mamun, Astrophys. Space Sci. 343, 221 (2013).

    Article  ADS  Google Scholar 

  12. S. Ashraf, S. Yasmin, M. Asaduzzaman, and A. A. Mamun, Astrophys. Space. Sci. 344, 145 (2013).

    Article  ADS  Google Scholar 

  13. J. S. Russell, in Report of the 14th Meeting of the British Association for the Advancement of Science, York, 1844 (John Murray, London, 1945) p. 311, http://www.macs.hw.ac.uk/~chris/Scott-Russell/SR44.pdf

    Google Scholar 

  14. H. R. Washimi and T. Taniuti, Phys. Rev. Lett. 17, 996 (1966).

    Article  ADS  Google Scholar 

  15. H. Ikezi, R. J. Tailor, and D. R. Baker, Phys. Rev. Lett. 25, 11 (1970).

    Article  ADS  Google Scholar 

  16. Y. Nakamura, T. Ito, and K. Koga, J. Plasma Phys. 49, 331 (1993).

    Article  ADS  Google Scholar 

  17. M. Temerin, K. Cerny, W. Lotko, and F. S. Mozer, Phys. Rev. Lett. 48, 1175 (1982).

    Article  ADS  Google Scholar 

  18. P. O. Dovner, A. I. Eriksson, R. Bostro[umlaut]m, and B. Holback, Geophys. Rev. Lett. 21, 1827 (1994).

    Article  ADS  Google Scholar 

  19. H. Schamel and S. Bujarbarua, Phys. Fluids 23, 2498 (1980).

    Article  ADS  Google Scholar 

  20. K. Nishihara and M. Tajiri, J. Phys. Soc. Jpn. 50, 4047 (1981).

    Article  ADS  Google Scholar 

  21. R. A. Cairns, A. A. Mamun, and R. Bingham, Geophys. Rev. Lett. 22, 2709 (1995).

    Article  ADS  Google Scholar 

  22. G. C. Das, Plasma Phys. 19, 363 (1977).

    Article  ADS  Google Scholar 

  23. S. K. El-Labany and A. El-Sheikh, Astrophys. Space Sci. 191, 185 (1992).

    Article  MATH  ADS  Google Scholar 

  24. A. A. Mamun and A. V. Ivlev, Phys. Rev. 55, 1852 (1997).

    Article  ADS  Google Scholar 

  25. M. Asaduzzaman and A. A. Mamun, Plasma Phys. Rep. 38, 743 (2012).

    Article  ADS  Google Scholar 

  26. W. M. Moslem, W. F. El-Taibany, E. K. El-Shewy, and E. F. El-Shamy, Phys. Plasmas 12, 052318 (2005).

    Article  ADS  Google Scholar 

  27. M. Asaduzzaman and A. A. Mamun, Phys. Rev. E 86, 016409 (2012).

    Article  ADS  Google Scholar 

  28. M. Asaduzzaman and A. A. Mamun, Phys. Plasmas 18, 113704 (2011).

    Article  ADS  Google Scholar 

  29. M. Asaduzzaman and A. A. Mamun, J. Plasma Phys. 78, 601 (2012).

    Article  ADS  Google Scholar 

  30. O. Rahman and A. A. Mamun, Phys. Plasmas 18, 083703 (2011).

    Article  ADS  Google Scholar 

  31. C. Tsallis, J. Stat. Phys. 52, 479 (1988).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. V. M. Vasyliunas, J. Geophys. Res. 73, 2839 (1968).

    Article  ADS  Google Scholar 

  33. M. P. Leubner, J. Geophys. Res. 87, 6335 (1982).

    Article  ADS  Google Scholar 

  34. A. R. Plastino and A. Plastino, Phys. Lett. A 174, 384 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  35. C. Feron and J. Hjorth, Phys. Rev. E 77, 022106 (2008).

    Article  ADS  Google Scholar 

  36. G. Gervino, A. Lavagno, and D. Pigato, Central Euro. J. Phys. 10, 594 (2012).

    Article  ADS  Google Scholar 

  37. A. Lavagno and D. Pigato, Euro. Phys. J. A 47, 52 (2011).

    Article  ADS  Google Scholar 

  38. F. Nobre and C. Tsallis, Physica A 213, 337 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  39. M. Sakagami and A. Taruya, Contin. Mech. Thermodyn. 16, 279 (2004).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  40. A. Renyi, Acta Math. Hungaria 6, 285 (1955).

    Article  MATH  MathSciNet  Google Scholar 

  41. M. Tribeche, L. Djebarni, and R. Amour, Phys. Plasmas 17, 042114 (2010).

    Article  ADS  Google Scholar 

  42. J. A. S. Lima, R. Silva, and J. Santos, Phys. Rev. E 61, 3260 (2000).

    Article  ADS  Google Scholar 

  43. B. Sahu and M. Tribeche, Astrophys. Space. Sci. 338, 259 (2012).

    Article  ADS  Google Scholar 

  44. M. Tribeche and P. K. Shukla, Phys. Plasmas 18, 103702 (2011).

    Article  ADS  Google Scholar 

  45. H. R. Pakzad, Phys. Plasmas 18, 082105 (2011).

    Article  ADS  Google Scholar 

  46. P. Eslami, M. Mottaghizadeh, and H. R. Pakzad, Phys. Scr. 84, 015504 (2011).

    Article  ADS  Google Scholar 

  47. E. I. El-Awady and W. M. Moslem, Phys. Plasmas 18, 082306 (2011).

    Article  ADS  Google Scholar 

  48. M. Tribeche and A. Merriche, Phys. Plasmas 18, 034502 (2011).

    Article  ADS  Google Scholar 

  49. P. Eslami, M. Mottaghizadeh, and H. R. Pakzad, Phys. Plasmas 18, 102303 (2011).

    Article  ADS  Google Scholar 

  50. S. Yasmin, M. Asaduzzaman, and A. A. Mamun, Astrophys. Space. Sci. 343, 245 (2013).

    Article  ADS  Google Scholar 

  51. S. Yasmin, M. Asaduzzaman, and A. A. Mamun, Phys. Plasmas 19, 103703 (2012).

    Article  ADS  Google Scholar 

  52. A. A. Mamun, Nuovo Cimento 20, 1307 (1998).

    Article  Google Scholar 

  53. B. Sahu, Astrophys. Space. Sci. 338, 251 (2012).

    Article  ADS  Google Scholar 

  54. I. B. Bernstein, J. M. Greene, and M. D. Kruskal, Phys. Rev. 108, 546 (1957).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  55. R. Z. Sagdeev, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Atomizdat, Moscow, 1964; Consultants Bureau, New York, 1968), Vol. 4.

  56. S. I. Popel, S. I. Kopnin, I. N. Kosarev, and M. Y. Yu, Adv. Space Res. 37, 414 (2006).

    Article  ADS  Google Scholar 

  57. T. V. Losseva, S. I. Popel, and A. P. Golub’, Plasma Phys. Rep 38, 729 (2012).

    Article  ADS  Google Scholar 

  58. T. V. Losseva, S. I. Popel, A. P. Golub’, Yu. N. Izvekova, and P. K. Shukla, Phys. Plasmas 19, 013703 (2012).

    Article  ADS  Google Scholar 

  59. T. V. Losseva, S. I. Popel, A. P. Golub’, and P. K. Shukla, Phys. Plasmas 16, 093704 (2009).

    Article  ADS  Google Scholar 

  60. A. A. Mamun, Astrophys. Space Sci. 268, 443 (1999).

    Article  ADS  Google Scholar 

  61. A. A. Mamun, R. A. Cairns, and P. K. Shukla, Phys. Plasmas 3, 702 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  62. S. I. Kopnin, I. N. Kosarev, S. I. Popel, and M. Y. Yu, Plasma Phys. Rep. 31, 3 (2005).

    Article  Google Scholar 

  63. A. Barkan, N. D’Angelo, and R. L. Merlino, Planet. Space Sci. 44, 239 (1996).

    Article  ADS  Google Scholar 

  64. X. Lian, J. Zheng, J. X. Ma, W. D. Liu, J. Xie, G. Zhuang, and C. X. Yu, Phys. Plasmas 8, 1459 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ashraf.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashraf, S., Yasmin, S., Asaduzzaman, M. et al. Electrostatic solitary structures in a magnetized nonextensive plasma with q-distributed electrons. Plasma Phys. Rep. 40, 306–311 (2014). https://doi.org/10.1134/S1063780X14030015

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X14030015

Keywords

Navigation